• Mechanical Properties and Crystallization Behavior of Surface-Treated Waste Phenol Resin-based Polyamide 6 Composites
  • In Gyu Choi*, **, Tae Min Lee*, **, Se Jun Yang*, **, Seung-Ju Oh*, **, Jin Woo Bae*, **,† , and Byeong Uk Nam*,†

  • *Department of Chemical and Biological Engineering, Korea University of Technology and Education, 1600, Chunjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, Korea
    **Future Convergence Engineering, Korea University of Technology and Education 1600, Chunjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, Korea

  • 표면 처리된 폐페놀 레진기반 Polyamide 6 복합체의 기계적 특성과 결정화 거동
  • 최인규*, ** · 이태민*, ** · 양세준*, ** · 오승주*, ** · 배진우*, **,† · 남병욱*,†

  • *한국기술교육대학교 화학생명공학전공, **한국기술교육대학교 미래융합공학전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Zhang, L.; Liang, S.; Chen, Z.; Influence of Particle Size and Addition of Recycling Phenolic Foam on Mechanical and Flame Retardant Properties of Wood-Phenolic Composites. Constr. Build. Mater. 2018, 168, 1-10.
  •  
  • 2. Liu, X.; Li, Y.; Xing, X.; Zhang, G.; Jing, X.; Fully Recyclable and High Performance Phenolic Resin Based on Dynamic Urethane Bonds and its Application in Self-repairable Composites. Polymer, 2021, 229, 124022.
  •  
  • 3. Chen, H.; Qin, R.; Chow, C.; Lau, D.; Recycling Thermoset Plastic Waste for Manufacturing Green Cement Mortar. Cem. Concr. Compos. 2023, 137, 104922.
  •  
  • 4. Chen, H.; Qin, R.; Lau, D.; Recycling Used Engine Oil in Concrete Design Mix: An Ecofriendly and Feasible Solution. J. Clean. Prod. 2021, 329, 129555.
  •  
  • 5. Lebreton, L. C. M.; Zwet, J.; Damsteeg, J. W.; Slat, B.; Andrady, A.; Reisser, J.; Reisser, J.; River Plastic Emissions to the World’s Oceans. Nat. Commun. 2017, 8, 15611.
  •  
  • 6. Wen, Z.; Xie, Y.; Chen, M.; Dinga, C.; China’s Plastic Import Ban Increases Prospects of Environmental Impact Mitigation of Plastic Waste Trade Flow Worldwide. Nat. Commun. 2021, 12, 425.
  •  
  • 7. Utekar, S.; Suriya, V.; More, N.; Rao, A.; Comprehensive Study of Recycling of Thermosetting Polymer Composites. Composites Part B, 2021, 207, 108596.
  •  
  • 8. Maheshwari, S.; Deswal, S.; Role of Waste Management at Landfills in Sustainable Waste Management. Int. J. Emerg. Technol. 2017, 8, 324-328.
  •  
  • 9. Almeshal, I.; Tayeh, B.; Alyousef, R.; Alabduljabbar, H.; Mohamed, A.; Alaskar, A.; Use of Recycled Plastic as Fine Aggregate in Cementitious Composites: A Review. Constr. Build. Mater. 2020, 253, 119146.
  •  
  • 10. Palmer, J.; Ghita, O.; Savage, L.; Evans, K. Successful Closed-loop Recycling of Thermoset Composites. Composites Part A, 2009, 40, 490-498.
  •  
  • 11. Kim, N. H.; Park, J. Y.; Lee, M. C.; Son, Y. G. Study on Polymer Blends from Recycled Polypropylene and Plastic Waste Processed in a Hydrothermal Carbonization Process. Polym. Korea, 2022, 46, 497-505.
  •  
  • 12. Cho, H. K.; Lim, J. S. Recycling of Carbon Particle from Phenol Resin Waste using Supercritical Fluid. Korean Chem. Eng. Res. 2017, 55, 220-224.
  •  
  • 13. Feller, J. F.; Linossier, I.; Grohens, Y. Conductive Polymer Composites: Comparative Study of Poly(ester)-short Carbon Fibres and Poly(epoxy)-short Carbon Fibres Mechanical and Electrical Properties. Mater. Lett. 2002, 57, 64-71.
  •  
  • 14. Bellingen, C. V.; Probst, N.; Grivei, E. Specific Conductive Carbon Blacks in Plastics Applications. Polym. Polym. Compos. 2002, 10, 63-72.
  •  
  • 15. Lee, P. C.; Ha, J. U.; Kim, S. Y.; Um, C. H.; Kim, S. H.; Jeoung, S. K.; Shin, D. H.; Jung, W. S. Effects of Temperature and Nano-filler Content on Water Uptake in Nanocomposites. Polym. Korea, 2019, 43, 584-588.
  •  
  • 16. Lee, P. C.; Kim, B. R.; Um, C. H.; Kim, S. H.; Lee, H. U.; Ha, J. U.; Jeoung, S. K.; Shin, D. H.; Jung, W. S. Study on Water Uptake in Polyamide-based Metallic Nanocomposites. Polym. Korea, 2019, 43, 139-143.
  •  
  • 17. Park, S. S.; Lee, Y. N.; Ha, K. R. Preparation and Properties of Thiol-ene UV-Photopolymerized Nanocomposites Using Cellulose Nanocrystals (CNCs) with Thiol Groups as Fillers. Polym. Korea, 2020, 44, 99-108.
  •  
  • 18. Sung, K. S.; Jang, H. R.; Kim, N. I. Thermal and Mechanical Properties of Nano Silicon Carbide/Epoxy Composites by Surface Modification Using Oleic Acid, Imidazole, and Epoxy Silane. Polym. Korea, 2023, 47, 786-792.
  •  
  • 19. White, J. L. Structure Developmet in Polymer Processing. Pure. Appl. Chem. 1983, 5, 765-776.
  •  
  • 20. Lee, J. H.; Kim, H. K.; Kang, H. J. Non-isothermal Crystallization Behaviors of Ethylene-Tetrafluoroethylene Copolymer. Polym. Korea, 2012, 36, 803-809.
  •  
  • 21. Jeziorny, A. Parameters Characterizaing the Kinetics of the Non-isothermal Crystallization of Poly(ethylene terephthalate) Determined by d.s.c. Polymer, 1978, 19, 1142-1144.
  •  
  • 22. Ozawa, T. Kinetics of Non-isothermal Crystallization. Polymer, 1971, 12, 150-158.
  •  
  • 23. Liu, T.; Mo. Z.; Wang, S.; Zhang, H. Nonisothermal Melt and Cold Crystallization Kinetics of Poly(Aryl Ether Ether Ketone Ketone). Polym. Eng. Sci. 1997, 37, 568-575.
  •  
  • 24. Kim, N. I.; Park, J. Y.; Kim, D. K.; Lee, M. Y.; Hong, C. M.; Bae, S. H.; Yoon, J. H.; Yun, J. H. Thermal Conductivity Studies on Electrically Insulating Polymer Composites in Relation to Mechanical Properties. Polym. Korea, 2020, 44, 559-565.
  •  
  • 25. Krause, B.; Kroschwald, L.; Potschke, P. The Influence of the Blend Ratio in PA6/PA66/MWCNT Blend Composites on the Electrical and Thermmal Properties. Polymers, 2019, 11, 112.
  •  
  • 26. Toda, A. Effect of a Nucleating Agent on Polymer Crystallization Analyzed Using the Original Avrami Model. Macromolecules, 2022, 55, 2202-2209.
  •  
  • 27. Liu, B.; Hu, G.; Zhang, J.; Wang, Z.; The Non-isothermal Crystallization Behavior of Polyamide 6 and Polyamide 6/HDPE/MAH/L-101 Composites. Polym. Eng. 2019, 39, 124-133.
  •  
  • 28. Shi, J.; Yang, X.; Wang, X.; Lu, L. Non-isothermal Crystallization Kinetics of Nylon6/Attapulgite Nanocomposites. Polym. Test. 2010, 29, 596-602.
  •  
  • 29. Zhao, C.; Zhang, P.; Yi, L.; Xu, F.; Wang, X.; Yong, J. Study on the Non-isothermal Crystallization Kinetics of novel Polyamide 6/silica nanocomposites Containing Epoxy Resin. Polym. Test. 2008, 27, 412-419.
  •  
  • 30. Bae, S. J.; Shin, M. S.; Yoo, S. M.; Song, W. J. Fabrication of Porus EVOH Separator Membrane Using NIPS Process for Next-Generaion Lithium-ion Battery. Polym. Korea, 2023, 47, 628-633.
  •  
  • 31. Paukshits, E. A.; Yaranova, M. A.; Batueva, I. S.; Bal’zhinimaev, B. S. A FTIR Study of Silanol Nests over Mesoporous Silicate Materials. Microp. Mesop. Mater., 2019, 288, 109582.
  •  
  • 32. Kumar, S.; Singh, J. Agrawal, V. V.; Ahamad, M.; Malhotra, B. D. Biocompatible Self-assembled Monolayer Platform Based on (3-glycidoxypropyl)trimethoxysilane for Total Cholesterol Estimation. Royal Soc. Chem. 2011, 3, 2237-2245.
  •  
  • 33. Pal, A. K.; Misra, M.; Mohanty, A. K. Silane Treated Starch Dispersed PBAT/PHBV-based Composites: Improved Barrier Performance for Single-Use Plastic Alternatives. Int. J. Biological Macromol. 2023, 229, 1009-1022.
  •  
  • 34. Wang, B.; Li, X. Hu, Z.; Wang, S.; Dong, W.; Wang, B.; Wang, L.; Gong, N. Functionalization of Aluminum Alloy Surface with Reactive Epoxide Silane to Induce Ultra-High Strength Polyamide 6/Aluminum Alloy Composite Joint. Appl. Surface Sci. 2023, 626, 157231.
  •  
  • 35. Yu, S. W.; Oh, K. H.; Hwang, J. Y.; Hong, S. H. The Effect of Amino-Silane Coupling Agents Having Different Molecular Structures on the Mechanical Properties of Basalt Fiber-Reinforced Polyamide 6,6 Composites. Compos. Part B, 2019, 163, 511-521.
  •  
  • 36. Lee, S. M. Characteristics of Epoxy Nanocomposites for Outdoor Use with Improved Mechanical Properties. Polym. Korea, 2020, 44, 186-191.
  •  
  • 37. Lee, D. S.; Lee, S. Y.; Min, B. G.; Seo, Y. S.; Lee, B. H.; Park, S. J. Effect of Silane Coupling Agent on Thermal Stability and Adhesion Properties of DGEBF Epoxy Resin. Polym. Korea, 2014, 38, 787-790.
  •  
  • 38. Hong, Y. G.; Lee, S. M. Characteristics of Eco-Friendly Epoxy Resin Modified with Epoxidized Soybean Oil (ESO); Thermal, Mechanical, and Morphological Properties. Polym. Korea, 2024, 48, 133-141.
  •  
  • 39. Rajan, R.; Rainosalo, E.; Thomas, S. P.; Ramamoorthy, S. K.; Zavasnik, J.; Vuorinen, J.; Skrifvars, M. Modification of Epoxy Resin by Silane-Couping Agent to Improve Tensile Properties of Viscose Fabric Composites. Polym. Bull. 2018, 75, 167-195.
  •  
  • 40. Kwon, S. M.; Zhang, T.; Jang, Y. J.; Jung, M. H.; Lee, E. H.; Kang, H. J. Non-isothermal Crystallization of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Korea, 2022, 46, 661-670.
  •  
  • 41. Jang, E. J.; Kim, Y. C. Study on the Crystallization Behavior and Rheological Properties of Nylon 6/Expanded Graphite Composites. Polym. Korea, 2023, 47, 164-170.
  •  
  • 42. Sang, L.; Zhao, M.; Liang, Q.; Wei, Z. Silane-Treated Basalt Fiber-Reinforced Poly(butylene succinate) Biocomposites: Interfacial Crystallization and Tensile Properties. Polymers, 2017, 9, 351
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(3): 306-316

    Published online May 25, 2025

  • 10.7317/pk.2025.49.3.306
  • Received on Nov 5, 2024
  • Revised on Dec 20, 2024
  • Accepted on Dec 23, 2024

Correspondence to

  • Jin Woo Bae*, ** , and Byeong Uk Nam*
  • *Department of Chemical and Biological Engineering, Korea University of Technology and Education, 1600, Chunjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, Korea
    **Future Convergence Engineering, Korea University of Technology and Education 1600, Chunjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, Korea

  • E-mail: jwbae@koreatech.ac.kr, bunam@koreatech.ac.kr