• Study on Mechanical and Thermal Properties of Polypropylene-based Composites with Crushed Phenolic Resin Waste and Compatibilizer
  • Se Jun Yang*, **, In Gyu Choi*, **, Tae Min Lee*, **, Jin Woo Bae*, **,† , and Byeong Uk Nam*,†

  • *Department of Chemical and Biological Engineering, Korea University of Technology and Education, 1600, Chunjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, Korea
    **Future Convergence Engineering, Korea University of Technology and Education, 1600, Chunjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, Korea

  • 분쇄된 폐페놀수지와 상용화제를 도입한 폴리프로필렌 기반 복합소재의 열적 및 기계적 물성 연구
  • 양세준*, ** · 최인규*, ** · 이태민*, ** · 배진우*, **,†  · 남병욱*,† 

  • *한국기술교육대학교 화학생명공학전공, **한국기술교육대학교 미래융합공학전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Jun-Seo P.; Chang-Gue H.; Byeong-Uk N.; Preparation and Characterization of High Density Polyethylene/silane Treated Pulverized-phenol Resin Composites, JKAIS, 2016, 17, 27-33.
  •  
  • 2. Fabien, B.; Didier, P.; Anne‑Sophie, C.; Jean‑Charles, B.; Patrick, I. Development of a Recycling Solution for Waste Thermoset Material: Waste Source Study, Comminution Scheme and Filler Characterization. J. Mater. Cycles Waste Manag., 2018, 20, 1320-1336.
  •  
  • 3. Shubham, U.; Suriya, V. K.; Neha, M.; Adarsh, R. Comprehensive Study of Recycling of Thermosetting Polymer Composites – Driving Force, Challenges and Methods. Compos. Part B, 2021, 207, 108596.
  •  
  • 4. Jian, H.; Huifang, D.; Shouxu, S. Research on Recovery Mechanism and Process of Waste Thermosetting Phenolic Resins Based on Mechanochemical Method. Adv. Mater. Sci. Eng. 2020, 1, 1384194.
  •  
  • 5. KaO, C. C.; Ghita, O. R.; Hallam, K. R.; Heard, P. J.; Evans, K. E. Mechanical Studies of Single Glass fibres Recycled from Hydrolysis Process Using Sub-critical Water. Compos. Part A, 2008, 28, 1581-1588.
  •  
  • 6. Dorigato, A. Recycling of Thermosetting Composites for Wind Blade Application. Adv. Ind. Eng. Polym. Res. 2021, 4, 116-132.
  •  
  • 7. Huaguo, C.; Renyuan, Q.; Cheuk, L. C.; Denvid, L. Recycling Thermoset Plastic Waste for Manufacturing Green Cement Mortar. Cem. Concr. Compos. 2023, 137, 104922.
  •  
  • 8. Shubhra, Q. T. shubhro.du@gmail.com, AKMM Alam, and MA Quaiyyum; Mechanical Properties of Polypropylene Composites: A Review. J. Thermoplastic Compos. Mater. 2011, 26, 1-30.
  •  
  • 9. Zhou, T. H.; Ruan, W. H.; Mai, Y. L.; Rong, M. Z.; Zhan, M. Q. Performance Improvement of Nano-silica/polypropylene Composites Through in-situ Cross-linking Approach. Compos. Sci. Technol. 2008, 68, 2858-2863.
  •  
  • 10. Gao, J.; Lu, Y.; Wei, G.; Zhang, X.; Liu, Y.; Qiao, J. Effect of Radiation on the Crosslinking and Branching of Polypropylene, J. Appl. Polym. Sci. 2002, 85, 1758-1764.
  •  
  • 11. Hamad, K.; Kaseem, M.; Deri, F. Rheological and Mechanical Properties of Poly(lactic acid)/polystyrene Polymer Blend. Polym. Bulletin, 2010, 65, 509-519.
  •  
  • 12. Zhu, J.; Abeykoon, C.; Karim, N. Investigation Into the Effects of Fillers in Polymer Processing. International J. Lightweight Mater. Manufacture, 2021, 4, 370-382.
  •  
  • 13. Kim, Y.; Shim, S. E. Review on Utilization of Fly Ash for Improvement of Mechanical and Thermal Properties of Polymer Composites. Polym. Korea, 2021, 45, 809-816.
  •  
  • 14. Ragostaa, G.; Abbatea, M.; Mustoa, P.; Scarinzia, G.; Mascia, L. Epoxy-silica Particulate Nanocomposites: Chemical Interactions, Reinforcement and Fracture Toughness. Polymer, 2005, 46, 10506-10516.
  •  
  • 15. Bailly, M.; Kontopoulou, M.; Mabrouk, K. E. Effect of Polymer/filler Interactions on the Structure and Rheological Properties of Ethylene-octene Copolymer/nanosilica Composites. Polymer, 2010, 51, 5506-5515.
  •  
  • 16. Xie, Y.; Hill, C. A.; Xiao, Z.; Militz, H.; Mai, C. Sailane Coupling Agents Used for Natural Fiber/polymer Composites: A Review. Compso. Part A, 2010, 41, 806-819.
  •  
  • 17. Ghosh, I.; Vippagunta, R.; Li, S.; Vippagunta, S. Key Considerations for Optimization of Formulation and Melt-extrusion Process Parameters for Developing Thermosensitive Compound. Pharm. Dev. Technol. 2012, 17, 502-510.
  •  
  • 18. Yatigala, N. S.; Bajwa, D. S.; Bajwa, S. G. Compatibilization Improves Physico-mechanical Properties of Biodegradable Biobased Polymer Composites. Compos. Part A, 2018, 107, 315-325.
  •  
  • 19. Wang, X.; Song, R.; Chen, Y.; Zhao, Y.; Zhu, K.; Yuan, X. Mechanical Properties of Polypropylene by Diversely Compatibilizing with Titanate Whiskers in Composites, Composites Science and Technology. Compos. Sci. Technol. 2018, 164, 103-109.
  •  
  • 20. Karsli, N. G.; Aytac, A.; Akbulut, M.; Deniz, V.; Guven, O. Effects of Irradiated Polypropylene Compatibilizer on the Properties of Short Carbon Fiber Reinforced Polypropylene Composites. Radiation Phys. Chem. 2013, 84, 74-78.
  •  
  • 21. Xu, Z.; Chen, L.; Huang, Y.; Li, J.; Wu, X. Wettability of Carbon Fibers Modified by Acrylic Acid and Interface Properties of Carbon Fiber/epoxy. Europ. Polym. J. 2008, 44, 494-503.
  •  
  • 22. Yang, H. S.; Kim, H. J.; Park, H. J.; Lee, B. J.; Hwang, T. S. Effect of Compatibilizing Agents on Rice-husk Flour Reinforced Polypropylene Composites. Compos. Struct. 2007, 77, 45-55.
  •  
  • 23. Kulkarni, M. B.; Mahanwar, P. A. Studies on the Effect of Maleic Anhydride–grafted Polypropylene with Different MFI on Mechanical, Thermal and Morphological Properties of Fly Ash-filled PP Composites. Thermoplastic Compos. Mater. 2014, 27, 1679-1700.
  •  
  • 24. Pardo, S. G.; Bernal, C.; Ares, A.; Abad, M. J.; Cano, J. Rheological, Thermal, and Mechanical Characterization of Fly Ash-Thermoplastic Composites With Different Coupling Agents, Polym. Compos. 2010, 31, 1722-1730.
  •  
  • 25. Yu, T.; Zhang, Z.; Song, S.; Bai, Y.; Wu, D. Tensile and Flexural Behaviors of Additively Manufactured Continuous Carbon Fiber-reinforced Polymer Composites. Compos. Struct. 2019, 225, 111147.
  •  
  • 26. Thomason, J. L.; Vlug, M. A. Influence of Fibre Length and Concentration on the Properties of Glass Fibre-reinforced Polypropylene: 1. Tensile and Flexural Modulus. Compos. Part A: Appl. Sci. Manuf., 1996, 27, 477-484.
  •  
  • 27. Zhang, D.; Guo, J.; Zhang, K. Effects of Compatilizers on Mechanical and Dynamic Mechanical Properties of Polypropylene–long Glass Fiber Composites. J. Thermoplastic Compos. Mater. 2013, 28, 634-655.
  •  
  • 28. Pal, A. K.; Misra, M.; Mohanty, A. K. Silane Treated Starch Dispersed PBAT/PHBV-based Composites: Improved Barrier Performance for Single-Use Plastic Alternatives. Int. J. Biolog. Macromol. 2023, 229, 1009-1022.
  •  
  • 29. Dang, L.; Nai, X.; Zhu, D.; Xu, N.; Dong, Y.; Li, W. Effects of Different Compatilizers on Mechanical, Crystallization and Thermal Properties of Polypropylene/magensium Oxysulfate Whisker Composites. J. Adhesion Sci. Technol. 2017, 31, 1839-1857.
  •  
  • 30. Shen, H.; Wang, Y.; Ma, K. Non-isothermal Crystallization Behavior of PP/Mg(OH)2 Composites Modified by Different Compatibilizers. Thermochimica Acta, 2007, 457, 27-34.
  •  
  • 31. Pan, P.; Zhu, B.; Kai; W., Dong, T.; Inoue, Y. Effect of Crystallization Temperature on Crystal Modifications and Crystallization Kinetics of Poly(L-lactide), J. Appl. Polym. Sci. 2008, 107, 54-62.
  •  
  • 32. Nurul, M. S.; Mariatti, M. Effect of Thermal Conductive Fillers on the Properties of Polypropylene Composites. J. Thermoplastic Compos. Mater. 2011, 26, 627-639.
  •  
  • 33. Golebiewski, J.; Galeski, A. Thermal Stability of Nanoclay Polypropylene Composites by Simultaneous DSC and TGA, Compos. Sci. Technol. 2007, 67, 3442-3447.
  •  
  • 34. Bajwa, D. S.; Adhikari, S.; Shojaeiarani, J.; Bajwa, S. G.; Pandey, P.; Shanmugam, S. R. Characterization of Bio-carbon and Ligno-cellulosic fiber Reinforced Bio-composites with Compatibilizer. Construct. Build. Mater. 2019, 204, 193-202.
  •  
  • 35. Shen, H.; Wang, Y.; Ma, K. Effect of Compatibilizers on Thermal Stability and Mechanical Properties of Magnesium Hydroxide filled Polypropylene Composites. Thermochimica Acta, 2009, 483, 36-40.
  •  
  • 36. Zheng, J.; Aziz, T.; Fan, H.; Haq, F.; Khan, F. U.; Ullah, R.; Ullah, B.; Khattak, N. S.; Wei, J. Synergistic Impact of Cellulose Nanocrystals with Multiple Resins on Thermal and Mechanical Behavior. Zeitschrift Für Physikalische Chemie, 2021, 235, 1247-1262.
  •  
  • 37. Bellamy, L. J. The Infrared Spectra of Complex Molecules (2nd ed.), Vol. two: Advances in Infrared Group Frequencies; Chapman and Halii: Lodon; New York, 1980.
  •  
  • 38. Gulitah, V.; Liew, K. C. Morpho-mechanical Properties of Wood fiber Plastic Composite (WFPC) Based on Three Di-erent Recycled Plastic Codes, Int. J. Biobased Plastics, 2019, 1, 22-30.
  •  
  • 39. Lei, Y.; Wu, Q.; Yao, F.; Xu, Y. Preparation and Properties of Recycled HDPE/natural Fiber Composites. Compos. Part A: Appl. Sci. Manuf., 2007, 38, 1664-1674.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(3): 317-324

    Published online May 25, 2025

  • 10.7317/pk.2025.49.3.317
  • Received on Nov 20, 2024
  • Revised on Dec 20, 2024
  • Accepted on Jan 8, 2025

Correspondence to

  • Jin Woo Bae*, ** , and Byeong Uk Nam*
  • *Department of Chemical and Biological Engineering, Korea University of Technology and Education, 1600, Chunjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, Korea
    **Future Convergence Engineering, Korea University of Technology and Education, 1600, Chunjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31253, Korea

  • E-mail: jwbae@koreatech.ac.kr, bunam@koreatech.ac.kr