• Improved Mechanical Properties : Composite of Surface-modified Cellulose Nanofiber and Ultra-High Molecular Weight Polypropylene
  • Jae-Ryong Lee# , Ju-Hong Lee# , Won-Bin Lim, Jin-Gyu Min, Sang-Wook Byun, Seoung-Ho Kim, Yi-Cheon Kim, Ji-Hong Bae , and PilHo Huh

  • Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea

  • 향상된 기계적 특성:표면 개질 셀룰로오스 나노섬유와 초고분자량 폴리프로필렌의 복합체
  • 이재룡# · 이주홍# · 임원빈 · 민진규 · 변상욱 · 김성호 · 김이천 · 배지홍 · 허필호

  • 부산대학교 응용화학공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Demir, H.; Atikler, U.; Balkose, D.; Tuhminlioglu, F. The Effect of Fiber Surface Treatments on the Tensile and Water Sorption Properties of Polypropylene–luffa Fiber Composites. Compos. Part A: Appl. Sci. Manuf. 2006, 37, 447-456.
  •  
  • 2. Costa, H. M.; Ramos, V. D.; Rocha M. C. G. Rheological Properties of Polypropylene During Multiple Extrusion, Polym. Test. 2005, 24, 86-93.
  •  
  • 3. vode, N.; Qamar, S. A.; Bilal, M.; Barceló, D.; Iqbal, H. M. N. Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Stud. Chem. Environ. Eng. 2021, 4.
  •  
  • 4. Mohamad, N.; Maulod, H. E. A.; Razak, J. A. Sustainable Materials from Recycled Polypropylene Waste and Green Fillers: Processing, Properties, and Applications. CRC Press. 2023, pp 133-177.
  •  
  • 5. Gilbert, M. Chapter 1 - Plastics Materials: Introduction and Historical Development. In Brydson's Plastics Materials, 8th ed.; Gilbert, M., Eds.; Butterworth-Heinemann: Oxford, 2017; pp 1-18.
  •  
  • 6. Abdul Rasoul, Z. M. R.; Radhi, M. S.; Alsaad, A. J.; Muhannad, H. Elevated Temperature Performance of Reinforced Concrete Beams Containing Waste Polypropylene Fibers. Case Stud. Therm. Eng. 2020, 21.
  •  
  • 7. Achilias, D. S.; Roupakias, C.; Megalokonomos, P.; Lappas, A. A.; Antonakou, E. V. Chemical Recycling of Plastic Wastes Made from Polyethylene (LDPE and HDPE) and Polypropylene (PP). J. Hazard. Mater. 2007, 149, 536-542.
  •  
  • 8. Al-Mulla, A.; Alfadhel, K.; Qambar, G.; Shaban, H. Rheological Study of Recycled Polypropylene–starch Blends, Polym. Bull. 2013, 70, 2599-2618.
  •  
  • 9. Brachet, P.; Høydal, L. T.; Hinrichsen, E. L.; Melum, F. Modification of Mechanical Properties of Recycled Polypropylene from Post-consumer Containers. Waste Manage.2008, 28, 12, 2456-2464.
  •  
  • 10. Cong, X. Y.; Pierce, R.; Liu, X. L. Development of recycled polypropylene-based Sustainable Composites with Recycled Carbon Fibre/kenaf Fibre Hybrid Reinforcements. J. Phys.: Conf. Ser. 2021, 1765.
  •  
  • 11. Patel, K.; Chikkali, S. H.; Sivaram, S. Ultrahigh Molecular Weight Polyethylene: Catalysis, Structure, Properties, Processing and Applications. Prog. Polym. Sci. 2020, 109.
  •  
  • 12. Kisa, T.; Kimura, T.; Eno, A.; Janchai, K.; Yamaguchi, M.; Otsuki, Y.; Kimura, T.; Mizukawa, T.; Murakami, T.; Hato, K.; Okawa, T. Effect of Ultra-High-Molecular-Weight Molecular Chains on the Morphology, Crystallization, and Mechanical Properties of Polypropylene. Polymers. 2021, 13, 4222.
  •  
  • 13. Jiang, X.; Bin, Y.; Kikyotani, N.; Matsuo, M. Thermal, Electrical and Mechanical Properties of Ultra-high Molecular Weight Polypropylene and Carbon Filler Composites. Polym. J. 2006, 38, 419-431.
  •  
  • 14. Kanamoto, T.; Tsuruta, A.; Tanaka, K.; Takeda, M. Ultra-High Modulus and Strength Films of High Molecular Weight Polypropylene Obtained by Drawing of Single Crystal Mats. Polym. J. 1984, 16, 75-79.
  •  
  • 15. Bhattacharya, A. B.; Raju, A. T.; Chatterjee, T.; Naskar, K. Development and Characterizations of Ultra-high Molecular Weight EPDM/PP based TPV Nanocomposites for Automotive Applications. Polym. Compos. 2020, 41, 4950-4962.
  •  
  • 16. Gilman, A. B.; Piskarev, M. S.; Kuznetsov, A. A.; Ozerin, A. N. Modification of Ultrahigh-molecular-weight Polyethylene by Low-temperature Plasma (review). High Energy Chem. 2017, 51, 136-144.
  •  
  • 17. Gentekos, D. T.; Sifri, R. J.; Fors, B. P. Controlling Polymer Properties Through the Shape of the Molecular-weight Distribution. Nat. Rev. Mater. 2019, 4, 761-774.
  •  
  • 18. Capaccio, G.; Ward, I. M. Preparation of Ultra-high Modulus Linear Polyethylenes; Effect of Molecular Weight and Molecular Weight Distribution on Drawing Behaviour and Mechanical Properties. Polymer. 1974, 15, 233-238.
  •  
  • 19. Wingstrand, S. L.; Shen, B.; Kornfield, J. A.; Mortensen, K.; Parisi, D.; Vlassopoulos, D.; Hassager, O. Rheological Link Between Polymer Melts with a High Molecular Weight Tail and Enhanced Formation of Shish-Kebabs. ACS Macro Lett. 2017, 6, 11.
  •  
  • 20. Matsuba, G.; Sakamoto, S.; Ogino, Y.; Nishida, K.; Kanaya, T. Crystallization of Polyethylene Blends under Shear Flow. Effects of Crystallization Temperature and Ultrahigh Molecular Weight Component. Macromolecules 2007, 40, 20.
  •  
  • 21. Mishra, R. K; Sabu, A; Tiwari, S. K. Materials Chemistry and the Futurist Eco-friendly Applications of Nanocellulose: Status and Prospect. J. Saudi Chem. Soc. 2018, 22, 949-978.
  •  
  • 22. Bulota, M.; Kreitsmann, K.; Hughes, M.; Paltakari, J. Acetylated Microfibrillated Cellulose as a Toughening Agent in Poly(lactic acid). J. Appl. Polym. Sci. 2012, 126, E449-E458.
  •  
  • 23. Pinheiro, I. F.; Ferreira, F. V.; Souza, R. F.; Gouveia, R. F.; Lona, L. M. F.; Morales, A. R.; Mei, L. H. I. Mechanical, Rheological and Degradation Properties of PBAT Nanocomposites Reinforced by Functionalized Cellulose Nanocrystals. Eur. Polym. J. 2017, 97, 356-365.
  •  
  • 24. Cao, X.; Sun, S.; Peng, X.; Zhong, L.; Sun R.; Jiang, D. Rapid Synthesis of Cellulose Esters by Transesterification of Cellulose with Vinyl Esters under the Catalysis of NaOH or KOH in DMSO. J. Agric. Food Chem. 2013, 61, 2489-2495.
  •  
  • 25. Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 6.
  •  
  • 26. Saba, N.; Jawaid, M.; Paridah, M. T.; Al-othman, O. Y. A Review on Flammability of Epoxy Polymer, Cellulosic and Non-cellulosic Fiber Reinforced Epoxy Composites. Polym. Adv. Technol. 2016, 27, 577-590.
  •  
  • 27. Brinchi, L.; Cotana, F.; Fortunati, E.; Kenny, J. M. Production of Nanocrystalline Cellulose from Lignocellulosic Biomass: Technology and Applications. Carbohydr. Polym. 2013, 94, 154-169.
  •  
  • 28. Duan, L.; Yu, W. Proceedings of the 2016 3rd International Conference on Materials Engineering, Manufacturing Technology and Control. Adv. Eng. Res. 2016.
  •  
  • 29. Mariano, M.; Kissi, N. E.; Dufresne, A. Cellulose Nanocrystals and Related Nanocomposites: Review of Some Properties and Challenges. J. Polym. Sci. Part B: Polym. Phys. 2014, 52, 791-857.
  •  
  • 30. Xu, X.; Liu, F.; Jiang, L.; Zhu, J. Y.; Haagenson, D.; Wiesenborn, D. P. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces 2013, 5, 2785-3494.
  •  
  • 31. George, J.; Sabapathi, S. N. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 2015, 8, 45-54.
  •  
  • 32. Pönni, R.; Vuorinen, T.; Kontturi, E. Proposed Nano-scale Coalescence of Cellulose in Chemical Pulp Fibers During Technical Treatments. BioResources 2012, 7, 6077-6108.
  •  
  • 33. Lee, H. V.; Hamid, S. B. A.; Zain, S. K. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Sci. World J. 2014, 1.
  •  
  • 34. Khalid, M. Y.; Rashid, A.; Arif, Z. U.; Ahmed, W.; Arshad, H. Recent Advances in Nanocellulose-based Different Biomaterials: Types, Properties, and Emerging Applications. J. Mater. Res. Technol. 2021, 14, 2601-2623.
  •  
  • 35. An, Y.; Gu, L.; Wang, Y.; Li, Y. M.; Xie, B. H.; Yang, M. B. Morphologies of Injection Molded Isotactic Polypropylene/ultra High Molecular Weight Polyethylene Blends. Mater. Des. 2011, 35, 633-639.
  •  
  • 36. Yun, J. H.; Jeon, Y. J.; Kang, M. S. Prediction of the Elastic Properties of Ultra High Molecular-Weight Polyethylene Particle-Reinforced Polypropylene Composite Materials Through Homogenization. Appl. Sci. 2022, 12, 7699.
  •  
  • 37. Andresen, M.; Johansson, L. S.; Tanem, B. S.; Stenius, P. Properties and Characterization of Hydrophobized Microfibrillated Cellulose. Cellulose. 2006, 13, 665-677.
  •  
  • 38. Reverdy, C.; Belgacem, N.; Moghaddam, M. S.; Sundin, M.; Swerin, A.; Baras, J. One-step Superhydrophobic Coating using Hydrophobized Cellulose Nanofibrils. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 152-158.
  •  
  • 39. Nigmatullin, R.; Johns, M. A.; Muñoz-García, J. C.; Gabrielli, V.; Schmitt, J.; Angulo, J.; Khimyak, J. A.; Scott, J. L.; Edier, K. J.; Eichhorn, S. J. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels. Bio-Macromolecules. 2020, 21, 1812-1823.
  •  
  • 40. Cichosz, S.; Masek, A. Cellulose Fibers Hydrophobization via a Hybrid Chemical Modification. Polymers 2019, 11, 1174.
  •  
  • 41. Borhana Omran, A. A.; Mohammed, A. A. B. A.; Sapuan, S. M.; Ilyas, R. A.; Asyraf, M. R. M.; Koloor, S. S. R.; Petrů, M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers 2021, 13, 231.
  •  
  • 42. Uusi-Tarkka, E. K.; Skrifvars, M.; Khalili, P.; Heräjärvi, H.; Kadi, N.; Haapala, A. Mechanical and Thermal Properties of Wood-Fiber-Based All-Cellulose Composites and Cellulose-Polypropylene Biocomposites. Polymers 2023, 15, 475.
  •  
  • 43. Franco-Marquès, E.; Méndez, J. A.; Pèlach, M. A.; Vilaseca, F.; Bayer, J.; Mutjé, P. Influence of Coupling Agents in the Preparation of Polypropylene Composites Reinforced with Recycled Fibers. Chem. Eng. J. 2011, 166, 1170-1178.
  •  
  • 44. Granda, L. A.; Oliver-Ortega, H.; Fabra, M. J.; Tarrés, Q.; Pèlach, M. À.; Lagarón, J. M.; Méndez, J. A. Improved Process to Obtain Nanofibrillated Cellulose (CNF) Reinforced Starch Films with Upgraded Mechanical Properties and Barrier Character. Polymers2020, 12, 1071.
  •  
  • 45. Shi, D.; Yang, J.; Yao, Z.; Wang, Y.; Huang, H.; Jing, W.; Yin, J.; Costa, G. Functionalization of Isotactic Polypropylene with Maleic Anhydride by Reactive Extrusion: Mechanism of Melt Grafting. Polym.J. 2001, 42, 5549-5557.
  •  
  • 46. Ohta, T.; Ikeda, Y.; Kishimoto, M.; Sakamoto, Y.; Kawamura, H.; Asaeda, E. The Ultra-drawing Behaviour of Ultra-high-molecular-weight Polypropylene in the Gel-like Spherulite Press Method: Influence of Solution Concentration. Polym. J. 1998, 39, 4739-4800.
  •  
  • 47. Kim, B. G.; Gavande, B.; Jeong, M. K.; Kim, M. H.; Lee, W. K. Properties of Blends of Ultra-high Molecular Weight Polypropylene with Various Low Molecular Weight Polypropylenes. Mol. Cryst. Liquid Cryst. 2023, 762, 63-70.
  •  
  • 48. Sabzalian, Z.; Alam, M. N.; Van de Ven, T. G. M. Hydrophobization and Characterization of iNternally Crosslink-reinforced Cellulose Fibers. Cellulose 2014, 21, 1381-1393.
  •  
  • 49. Ortega, H. O.; Reixach, R.; Espinach, F. X.; Mendez, J. A. Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance. Materials 2022, 15, 1161.
  •  
  • 50. Wang, K.; Zhou, C.; Zhang, H.; Zhao, D. Modification of Polypropylene by Melt Vibration Blending with Ultra High Molecular Weight Polyethylene. Adv. Polym. Technol. 2002, 21, 153-234.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(3): 325-333

    Published online May 25, 2025

  • 10.7317/pk.2025.49.3.325
  • Received on Nov 21, 2024
  • Revised on Jan 21, 2025
  • Accepted on Jan 21, 2025

Correspondence to

  • i-Hong Bae , and PilHo Huh
  • Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Korea

  • E-mail: jhbae@pusan.ac.kr, pilho.huh@pusan.ac.kr