• Characteristic of Multicyclic Polymers via Brownian Dynamics Simulation
  • Chaehyun Cho  and Jun Mo Kim 

  • Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Kyoggi-do 16227, Korea

  • 브라운 동역학 시뮬레이션을 이용한 멀티 고리형 고분자의 특성
  • 조채현  · 김준모 

  • 경기대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Haque, F. M.; Grayson, S. M. The Synthesis, Properties and Potential Applications of Cyclic Polymers. Nat. Chem. 2020, 12, 433-444.
  •  
  • 2. Hadjichristidis,N.;Hirao,A.;Tezuka,Y.;DuPrez,F. Complex Macromolecular Architectures: Synthesis, Characterization, and Self-Assembly;JohnWiley&Son:Hoboken,NJ,2011.
  •  
  • 3. Roovers,J.;Toporowski,P.M.SynthesisandCharacterizationofRingPolybutadienes. J. Polym. Sci. B 1988,26,1251-1259.
  •  
  • 4. Hild,G.;Strazielle,C.;Rempp,P.CyclicMacromolecules—SynthesisandCharacterizationofRing-ShapedPolystyrenes. Eur. Polym. J. 1983,19,721-727.
  •  
  • 5. Liénard, R.; De Winter, J.; Coulembier, O. Cyclic Polymers: Advances in Their Synthesis, Properties, and Biomedical Applications. J. Polym. Sci. 2020, 58, 1481-1502.
  •  
  • 6. Chang, Y. A.; Waymouth, R. M. Recent Progress on the Synthesis of Cyclic Polymers via Ring-Expansion Strategies. J. Polym. Sci. A Polym. Chem. 2017, 55, 2892-2902.
  •  
  • 7. Yamamoto, T. Synthesis of Cyclic Polymers and Topology Effects on Their Diffusion and Thermal Properties. Polym. J. 2013, 45, 711-717.
  •  
  • 8. Arrighi, V.; Gagliardi, S.; Dagger, A. C.; Semlyen, J. A.; Higgins, J. S.; Shenton, M. J. Conformation of Cyclics and Linear Chain Polymers in Bulk by SANS. Macromolecules 2004, 37, 8057-8065.
  •  
  • 9. Flory,P. J. Principles of Polymer Chemistry;CornellUniversityPress:Ithaca,NY,1953.
  •  
  • 10. Rubinstein,M.;Colby,R. H. Polymer Physics;OxfordUniversityPress:Oxford,2003.
  •  
  • 11. Pasquino, R.; Vasilakopoulos, T. C.; Jeong, Y. C.; Lee, H.; Rogers, S.; Sakellariou, G.; Allgaier, J.; Takano, A.; Brás, A. R.; Chang, T.; Gooßen, S.; Pyckhout-Hintzen, W.; Wischnewski, A; Hadjichristidis, N.; Richter, D.; Rubinstein, M.; Vlassopoulos, D. Viscosity of Ring Polymer Melts. ACS Macro. Lett. 2013, 2, 874-878.
  •  
  • 12. Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Unexpected Power-Law Stress Relaxation of Entangled Ring Polymers. Nat. Mater. 2008, 7, 997-1002.
  •  
  • 13. Roovers,J.MeltPropertiesofRingPolystyrenes. Macromolecules 1984,18,1359-1361.
  •  
  • 14. Stratton, R. A. Non-Newtonian Flow in Polymer Systems with No Macromolecules Entanglement Coupling. Macromolecules 1954, 5, 304-310.
  •  
  • 15. Yan, Z. C.; Costanzo, S.; Jeong, Y.; Chang, T.; Vlassopoulos, D. Linear and Nonlinear Shear Rheology of a Marginally Entangled Ring Polymer. Macromolecules 2016, 49, 1444-1453.
  •  
  • 16. Watanabe, H.; Inoue, T.; Matsumiya, Y. Transient Conformational Change of Bead-Spring Ring Chain during Creep Process. Macromolecules 2006, 39, 5419-5426.
  •  
  • 17. Tsolou, G.; Stratikis, N.; Baig, C.; Stephanou, P. S.; Mavrantzas, V. G. Melt Structure and Dynamics of Unentangled Polyethylene Rings: Rouse Theory, Atomistic Molecular Dynamics Simulation, and Comparison with the Linear Analogues. Macromolecules 2010, 43, 10692-10713.
  •  
  • 18. Halverson,J. D.;Lee,W. B.;Grest,G. S.;Grosberg,A. Y.;Kremer,K.MolecularDynamicsSimulationStudyofNonconcatenatedRingPolymersinaMelt.I.Statics. J. Chem. Phys. 2011,134,204904.
  •  
  • 19. Tsamopoulos, A. J.; Katsarou, A. F.; Tsalikis, D. G.; Mavrantzas, V. G. Shear Rheology of Unentangled and Marginally Entangled Ring Polymer Melts from Large-Scale Nonequilibrium Molecular Dynamics Simulations. Polymers 2019, 11, 1194.
  •  
  • 20. Yoon, J.; Kim, J.; Baig, C. Nonequilibrium Molecular Dynamics Study of Ring Polymer Melts under Shear and Elongation Flows: A Comparison with Their Linear Analogs. J. Rheol. 2016, 60, 673-685.
  •  
  • 21. Jeong, S. H.; Cho, S.; Roh, E. J.; Ha, T. Y.; Kim, J. M.; Baig, C. Intrinsic Surface Characteristics and Dynamic Mechanisms of Ring Polymers in Solution and Melt under Shear Flow. Macromolecules 2020, 53, 10051-10060.
  •  
  • 22. Chen, W.; Chen, J.; An, L. Tumbling and Tank-Treading Dynamics of Individual Ring Polymers in Shear Flow. Soft Matter 2013, 9, 4312-4318.
  •  
  • 23. Young, C. D.; Zhou, Y.; Schroeder, C. M.; Sing, C. E. Dynamics and Rheology of Ring-Linear Blend Semidilute Solutions in Extensional Flow. Part I: Modeling and Molecular Simulations. J. Rheol. 2021, 65, 757-777.
  •  
  • 24. Halverson, J. D.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Rheology of Ring Polymer Melts: From Linear Contaminants to Ring-Linear Blends. Phys. Rev. Lett. 2012, 108, 038301.
  •  
  • 25. Borger, A.; Wang, W.; O’Connor, T. C.; Ge, T.; Grest, G. S.; Jensen, G. V.; Ahn, J.; Chang, T.; Hassager, O.; Mortensen, K. Threading–unthreading Transition of Linear-ring Polymer Blends in Extensional Flow. ACS Macro. Lett. 2020, 9, 1452-1457.
  •  
  • 26. Tsalikis, D. G.; Mavrantzas, V. G. Size and Diffusivity of Polymer Rings in Linear Polymer Matrices: The Key Role of Threading Events. Macromolecules 2020, 53, 803-820.
  •  
  • 27. Zhu, S.; Su, Y.; Shams, S.; Feng, Y.; Tong, Y.; Zheng, G. Lassomycin and Lariatin Lasso Peptides as Suitable Antibiotics for Combating Mycobacterial Infections: Current State of Biosynthesis and Perspectives for Production. Appl. Microbiol. Biotechnol. 2019, 103, 3931-3940.
  •  
  • 28. Cheng, C.; Hua, Z. C. Lasso Peptides: Heterologous Production and Potential Medical Application. Front. Bioeng. Biotechnol. 2020, 8, 571165.
  •  
  • 29. Haydukivska, K.; Blavatska, V.; Paturej, J. Molecular Conformations of Dumbbell-Shaped Polymers in Good Solvent. Phys. Rev. E 2023, 108, 034502.
  •  
  • 30. Rosa, A.; Smrek, J.; Turner, M. S.; Michieletto, D. Threading-Induced Dynamical Transition in Tadpole-Shaped Polymers. ACS Macro Lett. 2020, 9, 743-748.
  •  
  • 31. Segawa, Y.; Kuwayama, M.; Itami, K. Synthesis and Structure of [9]Cycloparaphenylene Catenane: An All-Benzene Catenane Consisting of Small Rings. Org. Lett. 2020, 22, 1067-1070.
  •  
  • 32. Ahmadian Dehaghani, Z.; Chubak, I.; Likos, C. N.; Ejtehadi, M. R. Effects of Topological Constraints on Linked Ring Polymers in Solvents of Varying Quality. Soft Matter 2020, 16, 3029-3038.
  •  
  • 33. Murashima, T.; Hagita, K.; Kawakatsu, T. Topological Transition in Multicyclic Chains with Structural Symmetry Inducing Stress-Overshoot Phenomena in Multicyclic/Linear Blends under Biaxial Elongational Flow. Macromolecules 2022, 55, 9358-9372.
  •  
  • 34. Bohn, M.; Heermann, D. W.; Lourenço, O.; Cordeiro, C. On the Influence of Topological Catenation and Bonding Constraints on Ring Polymers. Macromolecules 2010, 43, 2564-2573.
  •  
  • 35. Farimani, R. A.; Ahmadian Dehaghani, Z.; Likos, C. N.; Ejtehadi, M. R. Effects of Linking Topology on the Shear Response of Connected Ring Polymers: Catenanes and Bonded Rings Flow Differently. Phys. Rev. Lett. 2024, 132, 148101.
  •  
  • 36. Uehara, E.; Deguchi, T. Statistical and Hydrodynamic Properties of Double-Ring Polymers with a Fixed Linking Number between Twin Rings. J. Chem. Phys. 2014, 140, 044902.
  •  
  • 37. Doi, Y.; Ohta, Y.; Nakamura, M.; Takano, A.; Takahashi, Y.; Matsushita, Y. Precise Synthesis and Characterization of Tadpole-Shaped Polystyrenes with High Purity. Macromolecules 2013, 46, 1075-1081.
  •  
  • 38. Doi, Y.; Takano, A.; Takahashi, Y.; Matsushita, Y. Melt Rheology of Tadpole-Shaped Polystyrenes. Macromolecules 2015, 48, 8667-8674.
  •  
  • 39. Shi, G. Y.; Sun, J. T.; Pan, C. Y. Well-Defined Miktocycle Eight-Shaped Copolymers Composed of Polystyrene and Poly(ε-Caprolactone): Synthesis and Characterization. Macromol. Chem. Phys. 2011, 212, 1305-1315.
  •  
  • 40. Doi, Y.; Takano, A.; Takahashi, Y.; Matsushita, Y. Melt Rheology of Tadpole-Shaped Polystyrenes with Different Ring Sizes. Soft Matter 2020, 16, 8720-8724.
  •  
  • 41. Doi, Y.; Takano, A.; Takahashi, Y.; Matsushita, Y. Viscoelastic Properties of Dumbbell-Shaped Polystyrenes in Bulk and Solution. Macromolecules 2021, 54, 1366-1374.
  •  
  • 42. Tezuka, Y. Topological Polymer Chemistry for Designing Multicyclic Macromolecular Architectures. Polym. J. 2012, 44, 1159-1169.
  •  
  • 43. Öttinger,H. C. Stochastic Processes in Polymeric Fluids;Springer:Berlin,1996.
  •  
  • 44. Liu, T. W. Flexible Polymer Chain Dynamics and Rheological Properties in Steady Flows. J. Chem. Phys. 1989, 90, 5826-5842.
  •  
  • 45. Kim, J. M.; Edwards, B. J.; Keffer, D. J.; Khomami, B. Dynamics of Individual Molecules of Linear Polyethylene Liquids under Shear: Atomistic Simulation and Comparison with a Free-Draining Bead-Rod Chain. J. Rheol. 2010, 54, 283-310.
  •  
  • 46. Kim, J.; Baig, C. Precise analysis of polymer rotational dynamics. Sci. Rep. 2016, 6, 19127.
  •  
  • 47. Cho, S.; Jeong, S.; Kim, J. M.; Baig, C. Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow. Sci. Rep. 2017, 7, 9004.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2025; 49(3): 365-374

    Published online May 25, 2025

  • 10.7317/pk.2025.49.3.365
  • Received on Jan 13, 2025
  • Revised on Jan 15, 2025
  • Accepted on Jan 17, 2025

Correspondence to

  • Jun Mo Kim
  • Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Kyoggi-do 16227, Korea

  • E-mail: junmokim@kgu.ac.kr