• Iodine-Adsorbing Aqueous PAA Binder for Shuttle-Free Zn-Iodine Batteries
  • Su-Jong Bae*,#, Juwon Jeong**,#, and Woo-Jin Song*, **, ***,†

  • *Department of Material Science and Engineering, Chungnam National University, Daejeon 34134, Korea
    **Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
    ***Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea

  • 아이오딘 흡착 수계 PAA 바인더를 활용한 아연-아이오딘 배터리의 셔틀링 현상 억제
  • 배수종*,# · 정주원**,# · 송우진*, **, ***,†

  • *충남대학교 신소재공학과, **충남대학교 응용화학공학과, ***충남대학교 유기재료공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Chen, H.; Li, X.; Fang, K.; Wang, H.; Ning, J.; Hu, Y. Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism. Adv. Energy Mater. 2023, 13, 2302187.
  •  
  • 2. Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A; Dura, J. A.; Xu, K.; Wang, C. Highly Reversible Zinc Metal Anode for Aqueous Batteries. Nat. Mater. 2018, 17, 543-549.
  •  
  • 3. Lee, S.; Hwang, J.; Song, W. J.; Park, S. Toward High Energy Density Aqueous Zinc-Ion Batteries: Recent Progress and Future Perspectives. Batteries Supercaps, 2022, 5, e202200237.
  •  
  • 4. Liu, Y.; He, G.; Jiang, H.; Parkin, I. P.; Shearing, P. R.; Brett, D. J. L. Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities. Adv. Funct. Mat. 2021, 31, 2010445.
  •  
  • 5. Ma, L.; Chen, S.; Li, N.; Liu, Z.; Tang, Z.; Zapien, J. A.; Chen, S.; Fan, J.; Zhi, C. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries. Adv. Mater. 2020, 32, e1908121.
  •  
  • 6. Yang, H.; Qiao, Y.; Chang, Z.; Deng, H.; Zhou, H. A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries. Adv. Mater. 2020, 32, e2004240.
  •  
  • 7. Lin, D.; Rao, D.; Chiovoloni, S.; Wang, S.; Lu, J. Q.; Li, Y. Prototypical Study of Double-Layered Cathodes for Aqueous Rechargeable Static Zn-I(2) Batteries. Nano. Lett. 2021, 21, 4129-4135.
  •  
  • 8. Ma, L.; Ying, Y.; Chen, S.; Huang, Z.; Li, X.; Huang, H.; Zhi, C. Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities. Angew Chem. Int. Ed. Engl. 2021, 60, 3791-3798.
  •  
  • 9. Gao, W.; Cheng, S.; Zhang, Y.; Xie, E.; Fu, J. Efficient Charge Storage in Zinc–Iodine Batteries based on Pre-Embedded Iodine-Ions with Reduced Electrochemical Reaction Barrier and Suppression of Polyiodide Self-Shuttle Effect. Adv. Funct. Mater. 2023, 33, 2211979.
  •  
  • 10. Wang, S.; Huang, Z.; Tang, B.; Li, X.; Zhao, X.; Chen, Z.; Zhi, C.; Rogach, A. L. Conversion-Type Organic-Inorganic Tin-Based Perovskite Cathodes for Durable Aqueous Zinc-Iodine Batteries. Adv. Energy Mater. 2023, 13, 2300922.
  •  
  • 11. Li, W.; Wang, K.; Jiang, K. A High Energy Efficiency and Long Life Aqueous Zn–I2 Battery. J. Mater. Chem. A, 2020, 8, 3785-3794.
  •  
  • 12. Liu, H.; Xu, Z.; Cao, B.; Xin, Z.; Lai, H.; Gao, S.; Xu, B.; Yang, J. L.; Xiao, T.; Zhang, B.; Fan, H. J. Marangoni-Driven Self-Assembly MXene As Functional Membrane Enables Dendrite-Free and Flexible Zinc–Iodine Pouch Cells. Adv. Energy. Mater. 2024, 14, 2400318.
  •  
  • 13. Ji, Y.; Xie, J.; Shen, Z.; Liu, Y.; Wen, Z.; Luo, L.; Hong, G. Advanced Zinc–Iodine Batteries with Ultrahigh Capacity and Superior Rate Performance Based on Reduced Graphene Oxide and Water-in-Salt Electrolyte. Adv. Funct. Mater. 2023, 33, 2210043.
  •  
  • 14. Yang, H.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries. Adv. Mater. 2020, 32, e2004240.
  •  
  • 15. Shang, W.; Zhu, J.; Liu, Y.; Kang, L.; Liu, S.; Huang, B.; Song, J.; Li, X.; Jiang, F.; Du, W.; Gao, Y.; Luo, H. Establishing High-Performance Quasi-Solid Zn/I2 Batteries with Alginate-Based Hydrogel Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 24756-24764.
  •  
  • 16. Kang, Y.; Chen, G.; Hua, H.; Zhang, M.; Yang, J.; Lin, P.; Yang, H.; Lv, Z.; Wu, Q.; Zhao, J.; Yang, Y. A Janus Separator Based on Cation Exchange Resin and Fe Nanoparticles-decorated Single-wall Carbon Nanotubes with Triply Synergistic Effects for High-areal Capacity Zn-I2 Batteries. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300418.
  •  
  • 17. Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, F.; Wang, D.; Weber, A. Z.; Wang, L. W.; Battaglia, B. S.; Yang, W.; Liu, G. Toward an Ideal Polymer Binder Design for High-capacity Battery Anodes. J. Am. Chem. Soc. 2013, 135, 12048-56.
  •  
  • 18. Shi, Y.; Zhou, X.; Yu, G. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Acc. Chem. Res. 2017, 50, 2642-2652.
  •  
  • 19. Park, H. G.; Jung, M.; Lee, S.; Song, W. J.; Lee, J. S. Radical-Scavenging Activatable and Robust Polymeric Binder Based on Poly(acrylic acid) Cross-Linked with Tannic Acid for Silicon Anode of Lithium Storage System. Nanomaterials, 2022, 12, 3437.
  •  
  • 20. Heo, J. M.; Mun, J.; Lee, K. H. High-performance Lithium–sulfur Batteries Utilizing Charged Binder and Solid-state Ionogel Electrolyte. Macromol. Res. 2023,32, 187-196.
  •  
  • 21. Yuan, J. J.; Kong, Q. R.; Huang, Z.; Song, Y. Z.; Li, M. Y.; Fang, L. F. Zhu, B. K.; Li, H. Y. A Well-designed Polymer as a Three-in-one Multifunctional Binder for High-performance Lithium–sulfur Batteries. J. Mater. Chem. A, 2021, 9, 2970-2979.
  •  
  • 22. Yuan, H.; Huang, J. Q.; Peng, H. J.; Titirici, M. M.; Xiang, R.; Chen, R.; Liu, Q.; Zhang, Q. A Review of Functional Binders in Lithium–Sulfur Batteries. Adv. Energy Mater. 2018, 8, 1802107.
  •  
  • 23. Bai, Z.; Wang, G.; Liu, H.; Lou, Y.; Wang, N.; Liu, H. K.; Dou, S. Advancements in Aqueous Zinc-iodine Batteries: A Review. Chem. Sci. 2024, 15, 3071-3092.
  •  
  • 24. Zhang, S. J.; Hao, J.; Li, H.; Zhang, P. F.; Yin, Z. W.; Li, Y. Y.; Zhang, B.; Lin, Z.; Qiao, S. Z. Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries. Adv. Mater. 2022, 34, e2201716.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(4): 395-400

    Published online Jul 25, 2025

  • 10.7317/pk.2025.49.4.395
  • Received on Aug 21, 2024
  • Revised on Sep 23, 2024
  • Accepted on Feb 13, 2025

Correspondence to

  • Woo-Jin Song
  • *Department of Material Science and Engineering, Chungnam National University, Daejeon 34134, Korea
    **Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
    ***Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea

  • E-mail: wjsong@cnu.ac.kr