• Synthesis and Properties of Castor Oil-based Solvent-free NIPU Film
  • Hanwool Hong and Sangbum Kim 

  • Department of Chemical Engineering, Kyonggi Unviersity, 154-42, Gwanggyosan-ro, Yeontong-gu, Suwon 16227, Korea

  • 피마자유 기반 무용제성 NIPU 필름 합성 및 물성 분석
  • 홍한울 · 김상범 

  • 경기대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Choi, H. B; Kim, S. B. Effect of Silane Coupling Agent on Mechanical Properties of Glass Fiber Reinforced Polyurethane Foam. Polym. Korea 2023, 47, 547-552.
  •  
  • 2. Eom, S. Y; Lee, H. I; Lee, K. Y. Study on Reaction Behavior of Rigid Polyurethane Foam with Various Types and Contents of Gelling Catalysts. Polym. Korea 2014, 39, 210-218.
  •  
  • 3. Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F. On the Versatility of uRethane/urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chem. Rev. 2013, 113, 80-118.
  •  
  • 4. Ghasemlou, M.; Daver, F.; Ivanova, E. P.; Adhikari, B. Synthesis of Green Hybrid Materials Using Starch and Non-isocyanate Polyurethanes. Carbohyd. Polym. 2020, 229, 115535.
  •  
  • 5. Kathalewar, M.; Sabnis, A.; D’Mello, D. Isocyanate Free Polyurethanes From New CNSL Based Bis-cyclic Carbonate and Its Application in Coatings. Europ. Polym. J. 2014, 57, 99-108.
  •  
  • 6. Gomez-Lopez, A.; Elizalde, F.; Calvo, I.; Sardon, H. Trends in Non-isocyanate Polyurethane (NIPU) Development. Chem. Commun. 2021 57, 12254-12265.
  •  
  • 7. Rayung, M.; Abd Ghani, N.; Hasanudin, N. A Review on Vegetable Oil-based Non Isocyanate Polyurethane: Towards a Greener and Sustainable Production Route. RSC Adv. 2024, 14, 9273-9299.
  •  
  • 8. Turnaturi, R.; Zagni, C.; Patamia, V.; Barbera, V.; Floresta, G.; Rescifina, A. CO2-derived Non-isocyanate Polyurethanes (NIPUs) and Their Potential Applications. Green Chem. 2023, 25, 9574-9602.
  •  
  • 9. Anitha, S.; Unnikrishnan, G.; Kumar, K. S. Self-blowing Non-isocyanate Polyurethane Foam: Synthesis, Characterization and Properties. Mater. Lett. X. 2022, 14, 100142.
  •  
  • 10. Błażek, K.; Beneš, H.; Walterová, Z.; Abbrent, S.; Eceiza, A.; Calvo-Correas, T.; Datta, J. Synthesis and Structural Characterization of Bio-based Bis(cyclic carbonate)s for the Preparation of Non-isocyanate Polyurethanes. Polym. Chem. 2021, 12, 1643-1652.
  •  
  • 11. El Khezraji, S.; Ben youcef, H.; Belachemi, L.; Lopez Manchado, M. A.; Verdejo, R.; Lahcini, M. Recent Progress of Non-Isocyanate Polyurethane Foam and Their Challenges. Polym. 2023, 15, 254.
  •  
  • 12. Grignard, B.; Thomassin, J.-M.; Gennen, S.; Poussard, L.; Bonnaud, L.; Raquez, J.-M.; Dubois, P.; Tran, M.-P.; Park, C. B.; Jerome, C.; Detrembleur, C. CO2-blown Microcellular Non-isocyanate Polyurethane (NIPU) Foams: From Bio- and CO2-sourced Monomers to Potentially Thermal Insulating Materials. Green Chem. 2016, 18, 2206-2215.
  •  
  • 13. Yadav, N.; Seidi, F.; Crespy, D.; D’Elia, V. Polymers Based on Cyclic Carbonates as Trait d’Union Between Polymer Chemistry and Sustainable CO2 Utilization. ChemSusChem. 2019, 12, 724-754.
  •  
  • 14. Dong, W.; Yoshida, Y.; Endo, T. Synthesis of Poly(hydroxyurethane) from 5-membered Cyclic Carbonate Under Mild Conditions in the Presence of Bicyclic Guanidine and Their Reaction Process. Polym. Sci. 2021, 59, 502-509.
  •  
  • 15. Rehman, A.; Saleem, F.; Javed, F.; Ikhlaq, A.; Ahmad, S. W.; Harvey, A. Recent Advances in the Synthesis of Cyclic Carbonates via CO2 Cycloaddition to Epoxides. J. Environ. Chem. Eng. 2021, 9, 105113.
  •  
  • 16. Yan, T.; Liu, H.; Zeng, Z. X.; Pan, W. G. Recent Progress of Catalysts for Synthesis of Cyclic Carbonates From CO2 and Epoxides. J. CO2 Utilization. 2023, 68, 102355.
  •  
  • 17. Amezúa-Arranz, C.; Santiago-Calvo, M.; Rodríguez-Pérez, M. Á. A New Synthesis Route to Produce Isocyanate-free Polyurethane Foams. Europ. Polym. J. 2023, 197, 112366.
  •  
  • 18. Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C. Non-isocyanate Polyurethanes: From Chemistry to Applications. RSC Adv. 2013, 3, 4110-4129.
  •  
  • 19. Jo, Y. J.; Choi, S. H.; Lee, E. Y. Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass. Appl. Chem. Eng. 2013, 24, 579-586.
  •  
  • 20. Rodrigues, J. D. O.; Andrade, C. K. Z.; Quirino, R. L.; Sales, M. J. A. Non-isocyanate Poly(acyl-urethane) Obtained From Urea and Castor (Ricinus communis L.) Oil. Prog. Org. Coatings. 2022, 162, 106557.
  •  
  • 21. Centeno-Pedrazo, A.; Freixa, Z.; Feola, R.; Lunzer, F.; Garcia-Suarez, E. J.; Ortiz, P. Bringing Non-isocyanate Polyurethanes Closer to Industrial Implementation Using Carbonated Soybean Oil-based Amino Hardeners. Prog. Org. Coatings. 2023, 185, 107925.
  •  
  • 22. Xiu, S.; Shahbazi. A. Bio-oil Production and Upgrading Research: A Review. Renew. Sustain. Ener. Rev. 2012, 16, 4406-4414.
  •  
  • 23. Patel, P.; de Souza, F. M.; Gupta, R. K. Study of Soybean Oil-Based Non-Isocyanate Polyurethane Films via a Solvent and Catalyst-Free Approach. ACS Omega. 2024, 9, 5862-5875.
  •  
  • 24. Farhadian, A.; Ahmadi, A.; Omrani, I.; Miyardan, A. B.; Varfolomeev, M. A.; Nabid, M. R. Synthesis of Fully Bio-based And Solvent Free Non-isocyanate Poly(ester amide/urethane) Networks with Improved Thermal Stability on the Basis of Vegetable Oils. Polym. Degrad. Stab. 2018, 155, 111-121.
  •  
  • 25. Mahendran, A. R.; Aust, N.; Wuzella, G.; Müller, U.; Kandelbauer, A. Bio-Based Non-Isocyanate Urethane Derived from Plant Oil. J. Polym. Environment. 2012, 20, 926-931.
  •  
  • 26. Pérez-Sena, W. Y.; Cai, X.; Kebir, N.; Vernières-Hassimi, L.; Serra, C.; Salmi, T.; Leveneur, S. Aminolysis of Cyclic-carbonate Vegetable Oils as a Non-isocyanate Route for the Synthesis of Polyurethane: A Kinetic and Thermal Study. Chem. Eng. J. 2018, 346, 271-280.
  •  
  • 27. Wu, Z; Tang, L; Dai, J; Qu, J. Synthesis and Properties of Aqueous Cyclic Carbonate Dispersion and Non-isocyanate Polyurethanes Under Atmospheric Pressure. Prog. Org. Coatings 2019, 136, 105209.
  •  
  • 28. Guzmán, A. F.; Echeverri, D. A.; Rios, L. A. Carbonation of Epoxidized Castor Oil: a New Bio-based Building Block for the Chemical Industry. J. Chem. Technol. Biotechnol. 2017, 92, 1104-1110.
  •  
  • 29. Pathak, R.; Kathalewar, M.; Wazarkar, K.; Sabnis, A. Non-isocyanate Polyurethane (NIPU) from Tris-2-hydroxy Ethyl Isocyanurate Modified Fatty Acid for Coating Applications. Prog. Org. Coatings. 2015, 89, 160-169.
  •  
  • 30. Lin, S.; Huang, J.; Chang, P. R.; Wei, S.; Xu, Y.; Zhang, Q. Structure and Mechanical Properties of New Biomass-based Nanocomposite: Castor Oil-based Polyurethane Reinforced with Acetylated Cellulose Nanocrystal. Carbohyd. Polym. 2013, 95, 91-99.
  •  
  • 31. Yeboah, A.; Ying S.; Ku, J.; Xie, Y.; Amoanimaa-Dede, H.; Boateng, K. G. A.; Miao Chen, M.; Xuegui Yin, Xu. Castor oil (Ricinus communis): a Review on the Chemical Composition and Physicochemical Properties. Food Sci. Technol. 2021, 41, 399-413.
  •  
  • 32. Cassales, A.; Ramos, L. A.; Frollini, E. Synthesis of Bio-based Polyurethanes from Kraft Lignin and Castor oil with Simultaneous Film Formation. Int. J. Biological. 2020, 145, 28-41.
  •  
  • 33. Jing, X.; Li, X.; Di, Y.; Zhao, Y.; Wang, J.; Kang, M.; Li, Q. Effect of the Amide Units in Soft Segment and Urea Units in Hard Segment on Microstructures and Physical Properties of Polyurethane Elastomer. Polymer 2021, 233, 124205.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(4): 444-449

    Published online Jul 25, 2025

  • 10.7317/pk.2025.49.4.444
  • Received on Dec 12, 2024
  • Revised on Jan 6, 2025
  • Accepted on Jan 17, 2025

Correspondence to

  • Sangbum Kim
  • Department of Chemical Engineering, Kyonggi Unviersity, 154-42, Gwanggyosan-ro, Yeontong-gu, Suwon 16227, Korea

  • E-mail: ksb@kyonggi.ac.kr