• Chemical Sensor Device from Carbon Quantum Dot/Polypyrrole/Graphene Oxide Functionalized 3D Thermoplastic Polyurethane
  • Samayanan Selvam# , Mujeeb Rahman Rizan# , Jong Seob Choi , and Jin-Heong Yim

  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheonandaero, Cheonan, Chungnam 31080, Korea

  • 탄소 양자점/폴리피롤/그래핀 산화물 기능화 3차원 열가소성 폴리우레탄 복합체를 이용한 화학센서 장치
  • 사마야난셀밤# ·무집라흐만리잔# ·최종섭 · 임진형

  • 공주대학교 공과대학 신소재공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Liu, S.; Li, L. Ultrastretchable and Self-healing Double-network Hydrogel for 3D Printing and Strain Sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429-26437.
  •  
  • 2. Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729-742.
  •  
  • 3. Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y.; Wu, G.; Zhou, C. 3D Printing Technologies for Electrochemical Energy Storage. Nano. Energy. 2017, 40, 418-431
  •  
  • 4. Li, B.; Zhang, S.; Zhang, L.; Gao, Y.; Xuan, F. Train Sensing Behavior of FDM 3D Printed Carbon Black Filled TPU with Periodic Configurations and Flexible Substrates. J. Manuf. Process. 2022, 74, 283-295.
  •  
  • 5. Christ, J. F.; Aliheidari, N.; Ameli, A.; Tschke, P. 3D Printed Highly Elastic Strain Sensors of Multi-walled Carbon Nanotube/thermoplastic Polyurethane Nanocomposites. Mater Des. 2017, 131, 394-401
  •  
  • 6. Chen, Y.; Li, Y.; Xu, D.; Zhai, W. Fabrication of Stretchable Flexible Conductive Thermoplastic Polyurethane/graphene Composites via Foaming. RSC Adv, 2015, 5, 82034-82041.
  •  
  • 7. Xiang, D.; Zhang, X.; Li, Y.; Harkin-Jones, E.; Zheng, Y.; Wang, L. Enhanced Performance of 3D Printed Highly Elastic Strain Sensors of Carbon Nanotube/thermoplastic Polyurethane Nanocomposites via Non-covalent Interactions. Composites, 2019, 176, 107250.
  •  
  • 8. Zheng, Y.; Li, Y.; Li, Z.; Wang, Y.; Dai, K.; Zheng, G. The Effect of Filler Dimensionality on the Electromechanical Performance of Polydimethylsiloxane Based Conductive Nanocomposites for Flexible Strain Sensors. Compos Sci Technol. 2017, 139, 64-73.
  •  
  • 9. Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Construction of High-capacitance 3D CoO@ Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Lett. 2013, 13, 2078-2085.
  •  
  • 10. Lu, Q.; Zhou, Y. Synthesis of Mesoporous Polythiophene/MnO2 Nanocomposite and Its Enhanced Pseudocapacitive Properties. J. Power Sources 2011, 196, 4088-4094.
  •  
  • 11. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible Graphene/polyaniline Nanofiber Composite Films, ACS Nano 2010, 4, 1963-1970.
  •  
  • 12. Kim, Y. J.; Selvam, S.; Yim, J.-H. Preparation of Porous TPU-PPy Flexible Composite Using 3D Printer and Its Application as Electrode Scaffold for Energy Storage Devices. Polym. Korea, 2022, 46, 389-396.
  •  
  • 13. Sharma, S.; Kumar, R.; Kumar, K.; Thakur, N. Sustainable Applications of Biowaste-derived Carbon Dots in Eco-friendly Technological Advancements: A Review. Mater. Sci. Eng. B, 2024, 305, 117414.
  •  
  • 14. Atchudan, R.; Edison, T. N. J. I.; Shanmugam, M.; Perumal S.; Somanathan T.; Lee, Y. R. Sustainable Synthesis of Carbon Quantum Dots From Banana Peel Waste Using Hydrothermal Process for in vivo Bioimaging. Physica E: Low-dimensional Systems and Nanostructures, 2021, 126, 114417.
  •  
  • 15. Nazar, M.; Hasan, M.; Basuki, W.; Gani, B. A.; Nada, C. E. Microwave Synthesis of Carbon Quantum Dots from Arabica Coffee Ground for Fluorescence Detection of Fe3+, Pb2+, and Cr3+. ACS Omega, 2024, 9, 20571-20581.
  •  
  • 16. Qi, C.; Wang, H.; Yang, A.; Wang, W.; Xu. J. Facile Fabrication of Highly Fluorescent N-Doped Carbon Quantum Dots Using an Ultrasonic-Assisted Hydrothermal Method: Optical Properties and Cell Imaging, ACS Omega, 2021, 6, 32904-32916.
  •  
  • 17. Pontes, S. M. A.; Rodrigues, V. S. F. One-pot Solvothermal Synthesis of Full-color Carbon Quantum Dots for Application in Light Emitting Diodes. Nano-Structures & Nano-Objects, 2022, 32, 100917.
  •  
  • 18. Güntner, A. T.; Righettoni, M.; Pratsinis, S. E. Selective Sensing of NH3 by Si-doped α-MoO3 for Breath Analysis. Sensors Actuators B Chem. 2016, 223, 266-273.
  •  
  • 19. Hibbard, T.; Crowley, K. Point of Care Monitoring of Hemodialysis Patients with a Breath Ammonia Measurement Device Based on Printed Polyaniline Nanoparticle Sensors. Anal. Chem. 2013, 85, 12158-12165.
  •  
  • 20. Ji, X.; Banks, C. E.; Aldous, L. Electrochemical Ammonia Gas Sensing in Nonaqueous Systems: a Comparison of Propylene Carbonate with Room Temperature Ionic Liquids. Electroanalysis, 2007, 19, 2194-220.
  •  
  • 21. Oudenhoven, J. F. M.; Knoben, W. Electrochemical Detection of Ammonia Using a Thin Ionic Liquid Film as the Electrolyte. Procedia Eng. 2015, 120, 983-986.
  •  
  • 22. Quy, N. V.; Minh, V. A. Gas Sensing Properties at Room Temperature of a Quartz Crystal Microbalance Coated with ZnO Nanorods. Sensors and Actuators B: Chemical. 2011, 153, 188-193.
  •  
  • 23. Kwak, D.; Lei, Y.; Maric, R. Ammonia Gas Sensors: A Comprehensive Review. Talanta, 2019, 201, 713-730.
  •  
  • 24. As’ari, A. H.; Aflaha, R.; Katriani, L.; Kusumaatmaja, A.; Santoso, I.; Yudianti, R.; Triyana, K. An Ultra-sensitive Ammonia Sensor Based on a Quartz Crystal Microbalance Using Nanofibers Overlaid with Carboxylic Group-functionalized MWCNTs, Analyst 2024, 149, 5191-5205.
  •  
  • 25. Chokkareddy, R.; Niranjan, T.; Redhi, G. G. Chapter 13-Ionic Liquid Based Electrochemical Sensors and Their Applications. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, A.; Asiri, A., Suvardrun, K., Eds.; Elserier: Amsterdam, 2020; pp 367-387.
  •  
  • 26. Hussain, S.; Maktedar, S. S. Structural, Functional and Mechanical Performance of Advanced Graphene-based Composite Hydrogels. Results in Chemistry, 2023, 6, 101029.
  •  
  • 27. Jurgis, B.; Lina, M. Single-walled Carbon Nanotube-based Coating Modified with Reduced Graphene Oxide for the Design of Amperometric Biosensors. Mater. Sci. Eng. C, 2019, 98, 515-523.
  •  
  • 28. Hussain, M. F.; Slaughter, G. PtNPs Decorated Chemically Derived Graphene and Carbon Nanotubes for Sensitive and Selective Glucose Biosensing. J. Electroanalytical Chem. 2020, 861, 113990.
  •  
  • 29. Marzo, G.; Mastronadri, V. M. Sustainable Electronic Biomaterials for Body-compliant Devices: Challenges and Perspectives for Wearable Bio-mechanical Sensors and Body Energy Harvesters. Nano Energy, 2024, 123, 109336.
  •  
  • 30. Kim, Y. J.; Kim, D.-H.; Choi, J. S.; Yim, J.-H. A Multi-Functional Ammonia Gas and Strain Sensor with 3D-Printed Thermoplastic Polyurethane-Polypyrrole Composites. Polymer 2022, 240, 124490.
  •  
  • 31. Kim, Y. J.; Kang, H. J.; Moerk, C. T.; Lee, B.-T.; Choi, J. S.; Yim, J.-H. Flexible, Biocompatible, and Electroconductive Polyurethane Foam Composites Coated with Graphene Oxide for Ammonia Detection. Sensors Actuators: B. Chemical. 2021, 344, 130269.
  •  
  • 32. Cho, H. J.; Noh,Y.-J.; Jin, E.-Y.; Yim, J.-H. Study on the Hybrid Dual-functioning Application of Urethane FoamModified with Graphene Oxide and Polypyrrole for an Electrode Scaffoldas Well as Chemical Sensor. Polym. Korea, 2023, 47, 453-462.
  •  
  • 33. Selvam, S.; Yim, J.-H. Supercapacitor Combined Gas Sensor System from Carbon Quantum Dot/Polypyrrole/Graphene Oxide Functionalized Polyurethane Foam Matrixes. 2025, 49, 148-157.
  •  
  • 34. De, B.; Karak, N. A Green and Facile Approach for the Synthesis of Water-soluble Fluorescent Carbon Dots From Banana Juice. RSC Adv. 2013, 3, 8286-8290.
  •  
  • 35. Atchudan, R.; Edison, T. N. J. I. D. Facile Green Synthesis of Nitrogen-doped Carbon Dots Using Chionanthus Retusus Fruit Extract and Investigation of Their Suitability for Metal Ion Sensing and Biological Applications. Sensor. Actuator. B Chem. 2017, 246, 497-509.
  •  
  • 36. Brachi, P. Synthesis of Carbon Dots (CDs) Through the Fluidized Bed Thermal Treatment of Residual Biomass Assisted by γ-alumina. Appl. Catal. B Environ. 2020, 263, 118361.
  •  
  • 37. Mohammed, S. J.; Omer, K. M.; Hawaiz, F. E. Deep Insights to Explain the Mechanism of Carbon dot Formation at Various Reaction Times Using the Hydrothermal Technique: FTIR, 13C NMR, 1H NMR, and UV-visible Spectroscopic Approaches. RSC Adv., 2023, 13, 14340-14349.
  •  
  • 38. Papaioannou, N.; Titirici, M.-M.; Sapelkin, A. Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties. ACS Omega 2019, 4, 21658-21665.
  •  
  • 39. Choi, J.; Han, S. J.; Yim, J.-H. Effects of Fabrication Process of Conductive TPU Composites on Dual-Function Gas Sensor and Energy Devices. ACS Appl. Electron. Mater. 2024, 6, 658-668.
  •  
  • 40. Das, D.; Das, J.; Deb, K.; Chakraborty, S.; Saha, B. A Low-Cost Flexible Material System Made of PANI/Graphite for Resistive Detection and Quantitative Determination of Urea. Mater. Chem. Phys. 2023, 301, 127573.
  •  
  • 41. Zhang, X. Dry and Frost Resistance Conductive Hydrogels Based on Carbon Nanotubes Hybrids for Use as Flexible Strain Sensor. Sens. Actuators, A 2023, 350, 114143.
  •  
  • 42. Fernandez, F. D. M.; Khadka, R.; Yim, J.-H. Highly Porous, Soft, and Flexible Vapor-Phase Polymerized Polypyrrole−Styrene− Ethylene−Butylene−Styrene Hybrid Scaffold as Ammonia and Strain Sensor. RSC Adv. 2020, 10, 22533-22541.
  •  
  • 43. Bhat, N. V.; Gadre, A. P.; Bambole, V. A. Structural, Mechanical, and Electrical Properties of Electropolymerized Polypyrrole Composite Films. J. Appl. Polym. Sci. 2001, 80, 2511-2517.
  •  
  • 44. Khadka, R.; Yim, J.-H. Influence of Base Inhibitor and Surfactant on the Electrical and Physicochemical Properties of PEDOT-SiO2 Hybrid Conductive Films. Macromol. Res. 2015, 23, 559-565.
  •  
  • 45. Choi, J. S.; Yim, J.-H.; Kim, D.-W.; Jeon, J.-K., Ko, Y.-S.; Kim, Y. Effects of Various Imidazole-based Weak Bases and Surfactant on the Conductivity and Transparency of Poly(3,4-ethylenedioxythiophene) Films. Synthetic Metals, 2009, 159, 2506-2511.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2025; 49(4): 489-498

    Published online Jul 25, 2025

  • 10.7317/pk.2025.49.4.489
  • Received on Feb 3, 2025
  • Revised on Mar 10, 2025
  • Accepted on Mar 19, 2025

Correspondence to

  • Jong Seob Choi , and Jin-Heong Yim
  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheonandaero, Cheonan, Chungnam 31080, Korea

  • E-mail: choijongseob@kongju.ac.kr, jhyim@kongju.ac.kr