• Tungsten Doped Manganese Nanoflower for Photothermal Therapy
  • Kushal Chakraborty# , Jeong Man An*,# , and Yong-kyu Lee**,†

  • Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27470, Korea
    *Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
    **Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Korea

  • 광열치료를 위한 텅스텐이 도핑된 망간 나노플라워
  • 쿠샬차크라보르티# · 안정만*,# · 이용규**,†

  • 한국교통대학교 교통에너지융합학과, *한양대학교 생명공학과, **한국교통대학교 화공생물공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Plaza, J. L.; Carcelén, V. Conductive Properties of Foam and Cluster Structures Created from Hexanthiol-Passivated Gold Nanoparticles. Appl. Surf. Sci. 2009, 255, 6164-6167.
  •  
  • 2. Lassoued, A.; Lassoued, M. S.; Dkhil, B.; Ammar, S.; Gadri, A. Synthesis, Photoluminescence and Magnetic Properties of Iron Oxide (α-Fe2O3) Nanoparticles through Precipitation or Hydrothermal Methods. Phys. E Low-dimensional Syst. Nanostructures 2018, 101, 212-219.
  •  
  • 3. Paradise, M.; Goswami, T. Carbon Nanotubes – Production and Industrial Applications. Mater. Des. 2007, 28, 1477-1489.
  •  
  • 4. Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The Evolution of Commercial Drug Delivery Technologies. Nat. Biomed. Eng. 2021, 5, 951-967.
  •  
  • 5. Ghazal, H.; Waqar, A.; Yaseen, F.; Shahid, M.; Sultana, M.; Tariq, M.; Bashir, M. K.; Tahseen, H.; Raza, T.; Ahmad, F. Role of Nanoparticles in Enhancing Chemotherapy Efficacy for Cancer Treatment. Next Mater. 2024, 2, 100128.
  •  
  • 6. Amos, J. D.; Tian, Y.; Zhang, Z.; Lowry, G. V.; Wiesner, M. R.; Hendren, C. O. The NanoInformatics Knowledge Commons: Capturing Spatial and Temporal Nanomaterial Transformations in Diverse Systems. NanoImpact 2021, 23, 100331.
  •  
  • 7. Park, J.; Ham, S.; Jang, M.; Lee, J.; Kim, S.; Kim, S.; Lee, K.; Park, D.; Kwon, J.; Kim, H.; Kim, P.; Choi, K.; Yoon, C. Spatial–Temporal Dispersion of Aerosolized Nanoparticles During the Use of Consumer Spray Products and Estimates of Inhalation Exposure. Environ. Sci. Technol. 2017, 51, 7624-7638.
  •  
  • 8. Li, J.; Zhang, W.; Ji, W.; Wang, J.; Wang, N.; Wu, W.; Wu, Q.; Hou, X.; Hu, W.; Li, L. Near Infrared Photothermal Conversion Materials: Mechanism, Preparation, and Photothermal Cancer Therapy Applications. J. Mater. Chem. B 2021, 9, 7909-7926.
  •  
  • 9. Xu, Y.; Zou, M.; Wang, H.; Zhang, L.; Xing, M.; He, M.; Jiang, H.; Zhang, Q.; Kauppinen, E. I.; Xin, F.; Tian, Y. Upconversion Nanoparticles@single-Walled Carbon Nanotubes Composites as Efficient Self-Monitored Photo-Thermal Agents. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 303, 123173.
  •  
  • 10. Izakura, S.; Gu, W.; Nishikubo, R.; Saeki, A. Photon Upconversion through a Cascade Process of Two-Photon Absorption in CsPbBr3 and Triplet–Triplet Annihilation in Porphyrin/Diphenylanthracene. J. Phys. Chem. C 2018, 122, 14425-14433.
  •  
  • 11. Doaga, A.; Cojocariu, A. M.; Amin, W.; Heib, F.; Bender, P.; Hempelmann, R.; Caltun, O. F. Synthesis and Characterizations of Manganese Ferrites for Hyperthermia Applications. Mater. Chem. Phys. 2013, 143, 305-310.
  •  
  • 12. Wang, J.; Wu, X.; Shen, P.; Wang, J.; Shen, Y.; Shen, Y.; Webster, T. J.; Deng, J. Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment. Int. J. Nanomedicine 2020, 15, 1903-1914.
  •  
  • 13. Leto, D. F.; Jackson, T. A. Mn K-Edge X-Ray Absorption Studies of Oxo- and Hydroxo-Manganese(IV) Complexes: Experimental and Theoretical Insights into Pre-Edge Properties. Inorg. Chem. 2014, 53, 6179-6194.
  •  
  • 14. Pleau, E.; Kokoszka, G. Electron Paramagnetic Resonance Studies of Metal–Metal Interactions in Manganese(II) Complexes. The 10/3 Effect. J. Chem. Soc., Faraday Trans. 2 1973, 69, 355-362.
  •  
  • 15. Sinopoli, A.; La Porte, N. T.; Martinez, J. F.; Wasielewski, M. R.; Sohail, M. Manganese Carbonyl Complexes for CO2 Reduction. Coord. Chem. Rev. 2018, 365, 60-74.
  •  
  • 16. Bai, S.-P.; Lu, L.; Wang, R.-L.; Xi, L.; Zhang, L.-Y.; Luo, X.-G. Manganese Source Affects Manganese Transport and Gene Expression of Divalent Metal Transporter 1 in the Small Intestine of Broilers. Br. J. Nutr. 2012, 108, 267-276.
  •  
  • 17. Ashrafizadeh, M.; Ahmadi, Z.; Samarghandian, S.; Mohammadinejad, R.; Yaribeygi, H.; Sathyapalan, T.; Sahebkar, A. MicroRNA-Mediated Regulation of Nrf2 Signaling Pathway: Implications in Disease Therapy and Protection against Oxidative Stress. Life Sci. 2020, 244, 117329.
  •  
  • 18. Duan, J.; Liao, T.; Xu, X.; Liu, Y.; Kuang, Y.; Li, C. Metal-Polyphenol Nanodots Loaded Hollow MnO2 Nanoparticles with a “Dynamic Protection” Property for Enhanced Cancer Chemodynamic Therapy. J. Colloid Interface Sci. 2023, 634, 836-851.
  •  
  • 19. Jung, K.-W.; Lee, S. Y.; Lee, Y. J.; Choi, J.-W. Ultrasound-Assisted Heterogeneous Fenton-like Process for Bisphenol A Removal at Neutral PH Using Hierarchically Structured Manganese Dioxide/Biochar Nanocomposites as Catalysts. Ultrason. Sonochem. 2019, 57, 22-28.
  •  
  • 20. Xiao, M.; Qi, Y.; Feng, Q.; Li, K.; Fan, K.; Huang, T.; Qu, P.; Gai, H.; Song, H. P-Cresol Degradation through Fe(III)-EDDS/H2O2 Fenton-like Reaction Enhanced by Manganese Ion: Effect of PH and Reaction Mechanism. Chemosphere 2021, 269, 129436.
  •  
  • 21. de Oliveira Ribeiro, R. A.; Zuta, U. O.; Soares, I. P. M.; Anselmi, C.; Soares, D. G.; Briso, A. L. F.; Hebling, J.; de Souza Costa, C. A. Manganese Oxide Increases Bleaching Efficacy and Reduces the Cytotoxicity of a 10% Hydrogen Peroxide Bleaching Gel. Clin. Oral Investig. 2022, 26, 7277-7286.
  •  
  • 22. Li, Y.; Tian, X.; Lu, Z.; Yang, C.; Yang, G.; Zhou, X.; Yao, H.; Zhu, Z.; Xi, Z.; Yang, X. Mechanism for α-MnO2 Nanowire-Induced Cytotoxicity in Hela Cells. J. Nanosci. Nanotechnol. 2010, 10, 397-404.
  •  
  • 23. Wang, F.; Zheng, Y.; Chen, Q.; Yan, Z.; Lan, D.; Lester, E.; Wu, T. A Critical Review of Facets and Defects in Different MnO2 Crystalline Phases and Controlled Synthesis – Its Properties and Applications in the Energy Field. Coord. Chem. Rev. 2024, 500, 215537.
  •  
  • 24. Sharma, S.; Batra, S.; Chauhan, M. K.; Kumar, V. Photothermal Therapy for Cancer Treatment. In Targeted Cancer Therapy in Biomedical Engineering; Springer: Singapore, 2023; pp 755-780.
  •  
  • 25. Zhang, D.; Dai, J.; Zhang, J.; Zhang, Y.; Liu, H.; Xu, Y.; Wu, J.; Li, P. Preparation of Spherical Δ−MnO2 Nanoflowers by One-Step Coprecipitation Method as Electrode Material for Supercapacitor. ACS Omega 2024, 9, 18032-18045.
  •  
  • 26. Chu, K.; Liu, Y.; Li, Y.; Guo, Y.; Tian, Y.; Zhang, H. Multi-Functional Mo-Doping in MnO2 Nanoflowers toward Efficient and Robust Electrocatalytic Nitrogen Fixation. Appl. Catal. B Environ. 2020, 264, 118525.
  •  
  • 27. Cheney, M. A.; Bhowmik, P. K.; Moriuchi, S.; Birkner, N. R.; Hodge, V. F.; Elkouz, S. E. Synthesis and Characterization of Two Phases of Manganese Oxide from Decomposition of Permanganate in Concentrated Sulfuric Acid at Ambient Temperature. Colloids Surfaces A Physicochem. Eng. Asp. 2007, 307, 62-70.
  •  
  • 28. Mondal, J.; Srivastava, S. K. δ-MnO2 Nanoflowers and Their Reduced Graphene Oxide Nanocomposites for Electromagnetic Interference Shielding. ACS Appl. Nano Mater. 2020, 3, 11048-11059.
  •  
  • 29. Islam, M. S.; Hoque, S. M.; Rahaman, M.; Islam, M. R.; Irfan, A.; Sharif, A. Superior Cyclic Stability and Capacitive Performance of Cation- and Water Molecule-Preintercalated δ-MnO2/h-WO3 Nanostructures as Supercapacitor Electrodes. ACS Omega 2024, 9, 10680-10693.
  •  
  • 30. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051-1069.
  •  
  • 31. Gor, G. Y.; Huber, P.; Bernstein, N. Adsorption-Induced Deformation of Nanoporous Materials—A Review. Appl. Phys. Rev. 2017, 4.
  •  
  • 32. Allen, G. C.; Harris, S. J.; Jutson, J. A.; Dyke, J. M. A Study of a Number of Mixed Transition Metal Oxide Spinels Using X-Ray Photoelectron Spectroscopy. Appl. Surf. Sci. 1989, 37, 111-134.
  •  
  • 33. Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. XPS Studies of Solvated Metal Atom Dispersed (SMAD) Catalysts. Evidence for Layered Cobalt-Manganese Particles on Alumina and Silica. J. Am. Chem. Soc. 1991, 113, 855-861.
  •  
  • 34. Nefedov, V. I.; Salyn, Y. V.; Leonhardt, G.; Scheibe, R. A Comparison of Different Spectrometers and Charge Corrections Used in X-Ray Photoelectron Spectroscopy. J. Electron Spectros. Relat. Phenomena 1977, 10, 121-124
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2026; 50(1): 1-13

    Published online Jan 25, 2026

  • 10.7317/pk.2026.50.1.1
  • Received on Jan 30, 2025
  • Revised on Jul 17, 2025
  • Accepted on Jul 17, 2025

Correspondence to

  • Yong-kyu Lee
  • Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Korea

  • E-mail: leeyk@ut.ac.kr