• Preparation and Biofunctional Characterization of an Injectable Thermogel Incorporating Stem Cell Conditioned Medium and Tannic Acid
  • Se Yeon Shin*,#, Ryoung Eun Kim**,#, Haejin Choi*,#, Eun Young Kim**,† , Min Kyu Kim**, ***,† , and Kang Moo Huh*, ****,†

  • *Department of Materials Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    **MKbiotech Inc., 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    ***Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    ****Department of Polymer Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea

  • 줄기세포 배양액 및 탄닌산 함유 주입형 써모젤 제형의 제조 및생기능적 특성 분석
  • 신세연*,# · 김령은**,# · 최해진*,# · 김은영**,† · 김민규**, ***,† · 허강무*, ****,†

  • *충남대학교 신소재공학과, **엠케이바이오텍, ***충남대학교 동물자원과학부, ****충남대학교 고분자공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Boido, M.; Ghibaudi, M.; Gentile, P.; Favaro, E.; Fusaro, R.; Tonda-Turo, C. Chitosan-based Hydrogel to Support the Paracrine Activity of Mesenchymal Stem Cells in Spinal Cord Injury Treatment. Sci Rep. 2019, 9, 6402.
  •  
  • 2. Saeedi, P.; Nilchiani, L. S.; Zand, B.; Hajimirghasemi, M.; Halabian, R. An Overview of Stem Cells and Cell Products Involved in Trauma Injury. Regen. Ther. 2025, 29, 60-76.
  •  
  • 3. Al‐Jalodi, O.; Kupcella, M.; Breisinger, K.; Serena, T. E. A Multicenter Clinical Trial Evaluating the Durability of Diabetic Foot Ulcer Healing in Ulcers Treated with Topical Oxygen and Standard of Care Versus Standard of Care Alone 1 Year Post Healing. Int. Wound J. 2022, 19, 1838-1842.
  •  
  • 4. Peng, C.; Xu, H.; Zhuang, Q.; Liu, J.; Ding, Y.; Tang, Q.; Wang, Z.; Yao, K. Placenta‐derived Mesenchymal Stem Cells Promote Diabetic Wound Healing via Exosomal Protein Interaction Networks. Wound Repair Regen. 2024, 32, 638-651.
  •  
  • 5. Brown, C.; McKee, C.; Bakshi, S.; Walker, K.; Hakman, E.; Halassy, S.; Svinarich, D.; Dodds, R.; Govind, C. K.; Chaudhry, G. R. Mesenchymal Stem Cells: Cell Therapy and Regeneration Potential. J. Tissue. Eng. Regen. Med. 2019, 13, 1738-1755.
  •  
  • 6. Satija, N. K.; Singh, V. K.; Verma, Y. K.; Gupta, P.; Sharma, S.; Afrin, F.; Sharma, M.; Sharma, P.; Tripathi, R.; Gurudutta, G. Mesenchymal Stem Cell‐based Therapy: A New Paradigm in Regenerative Medicine. J. Cell. Mol. Med. 2009, 13, 4385-4402.
  •  
  • 7. Soleymaninejadian, E.; Pramanik, K.; Samadian, E. Immunomodulatory Properties of Mesenchymal Stem Cells: Cytokines and Factors. Am. J. Reprod. Immunol. 2012, 67, 1-8.
  •  
  • 8. Antoniadou, E.; David, A. L. Placental Stem Cells. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 31, 13-29.
  •  
  • 9. Moonshi, S. S.; Adelnia, H.; Wu, Y.; Ta, H. T. Placenta‐derived Mesenchymal Stem Cells for Treatment of Diseases: A Clinically Relevant Source. Adv. Therap. 2022, 5, 2200054.
  •  
  • 10. Caplan, A. I.; Correa, D. The MSC: An Injury Drugstore. Cell Stem Cell 2011, 9, 11-15.
  •  
  • 11. Phinney, D. G.; Pittenger, M. F. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017, 35, 2103-2103.
  •  
  • 12. Vizoso, F. J.; Eiro, N.; Cid, S.; Schneider, J.; Perez-Fernandez, R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int. J. Mol. Sci. 2017, 18, 1852.
  •  
  • 13. Li, S. Y.; Sun, J. C.; Yang, J. X.; Yang, Y.; Ding, H. F.; Yu, B. Y.; Ma, K.; Chen, M. L. Gelatin Methacryloyl (GelMA) Loaded with Concentrated Hypoxic Pretreated Adipose-derived Mesenchymal Stem Cells (ADSCs) Conditioned Medium Promotes Wound Healing and Vascular Regeneration in Aged Skin. Biomater. Res. 2023, 27, 11.
  •  
  • 14. Nifontova, G.; Safaryan, S.; Khristidis, Y.; Smirnova, O.; Vosough, M.; Shpichka, A.; Timashev, P. Advancing Wound Healing by Hydrogel-based Dressings Loaded With Cell-conditioned Medium: A Systematic Review. Stem Cell Res. Ther. 2024, 15, 371.
  •  
  • 15. Sendon-Lago, J.; Rio, L. G.-d.; Eiro, N.; Diaz-Rodriguez, P.; Avila, L.; Gonzalez, L. O.; Vizoso, F. J.; Perez-Fernandez, R.; Landin, M. Tailored Hydrogels as Delivery Platforms for Conditioned Medium From Mesenchymal Stem Cells in A Model of Acute Colitis in Mice. Pharmaceutics 2021, 13, 1127.
  •  
  • 16. Montero-Vilchez, T.; Sierra-Sánchez, Á.; Sanchez-Diaz, M.; Quiñones-Vico, M. I.; Sanabria-de-la-Torre, R.; Martinez-Lopez, A.; Arias-Santiago, S. Mesenchymal Stromal Cell-conditioned Medium for Skin Diseases: A Systematic Review. Front. Cell. Dev. Biol. 2021, 9, 654210.
  •  
  • 17. Nosrati, H.; Aramideh Khouy, R.; Nosrati, A.; Khodaei, M.; Banitalebi-Dehkordi, M.; Ashrafi-Dehkordi, K.; Sanami, S.; Alizadeh, Z. Nanocomposite Scaffolds for Accelerating Chronic Wound Healing by Enhancing Angiogenesis. J. Nanobiotechnol. 2021, 19, 1.
  •  
  • 18. Jin, R.; Song, G.; Chai, J.; Gou, X.; Yuan, G.; Chen, Z. Effects of Concentrated Growth Factor on Proliferation, Migration, and Differentiation of Human Dental Pulp Stem Cells In Vitro. J. Tissue Eng. 2018, 9, 2041731418817505.
  •  
  • 19. Wang, Z.; Wang, Z.; Lu, W. W.; Zhen, W.; Yang, D.; Peng, S. Novel Biomaterial Strategies for Controlled Growth Factor Delivery for Biomedical Applications. Npg Asia Mater. 2017, 9, e435-e435.
  •  
  • 20. Kim, J. H.; Green, D. S.; Ju, Y. M.; Harrison, M.; Vaughan, J. W.; Atala, A.; Lee, S. J.; Jackson, J. D.; Nykiforuk, C.; Yoo, J. J. Identification and Characterization of Stem Cell Secretome-based Recombinant Proteins for Wound Healing Applications. Front. Bioeng. Biotechnol. 2022, 10, 954682.
  •  
  • 21. Nilforoushzadeh, M. A.; Khodadadi Yazdi, M.; Baradaran Ghavami, S.; Farokhimanesh, S.; Mohammadi Amirabad, L.; Zarrintaj, P.; Saeb, M. R.; Hamblin, M. R.; Zare, M.; Mozafari, M. Mesenchymal Stem Cell Spheroids Embedded in An Injectable Thermosensitive Hydrogel: An In Situ Drug Formation Platform for Accelerated Wound Healing. ACS Biomater. Sci. Eng. 2020, 6, 5096-5109.
  •  
  • 22. Tang, J.; Zhang, P.; Liu, Y.; Hou, D.; Chen, Y.; Cheng, L.; Xue, Y.; Liu, J. Revolutionizing Pressure Ulcer Regeneration: Unleashing the Potential of Extracellular Matrix-derived Temperature-sensitive Injectable Antioxidant Hydrogel for Superior Stem Cell Therapy. Biomaterials 2025, 314, 122880.
  •  
  • 23. Yu, L.; Ding, J. D. Injectable Hydrogels as Unique Biomedical Materials. Chem. Soc. Rev. 2008, 37, 1473-1481.
  •  
  • 24. Lee, K. E.; Choi, D. H.; Joo, C.; Kang, S.-W.; Huh, K. M.; Park, Y. S. Octanoyl Glycol Chitosan Enhances the Proliferation and Differentiation of Tonsil-derived Mesenchymal Stem Cells. Carbohyd. Polym. 2021, 264, 117992.
  •  
  • 25. Mao, W.; Ji, Q.; Chen, P.; Fang, Z.; Li, X. Multifunctional Hydrogel Delivery System for Disease Therapy. Macromol. Res. 2023, 31, 327-338.
  •  
  • 26. Le, T. P.; Jin, S.; Shin, S.-A.; Lyu, A.-R.; Park, Y.-H.; Choi, J. S.; Huh, K. M. Injectable Polyplex-loaded Glycol Chitosan Thermogel for Efficient and Safe Inner Ear Gene Delivery. J. Control. Release 2025, 380, 1095-1108.
  •  
  • 27. Park, S.; Le, T. P.; Byun, H. J.; Lee, S.; Lee, M.; Huh, K. M.; Lee, J. Y. Synergistic Effects of Conductive Hydrogels and Electrical Stimulation in Volumetric Muscle Loss. Chem. Eng. J. 2025, 512, 162362.
  •  
  • 28. Li, Z.; Shim, H.; Cho, M. O.; Cho, I. S.; Lee, J. H.; Kang, S.-W.; Kwon, B.; Huh, K. M. Thermo-sensitive Injectable Glycol Chitosan-based Hydrogel for Treatment of Degenerative Disc Disease. Carbohydr. Polym. 2018, 184, 342-353.
  •  
  • 29. Lee, E. J.; Kang, E.; Kang, S. W.; Huh, K. M. Thermo-irreversible Glycol Chitosan/hyaluronic Acid Blend Hydrogel for Injectable Tissue Engineering. Carbohydr. Polym. 2020, 244, 116432.
  •  
  • 30. Cho, M. O.; Li, Z.; Shim, H. E.; Cho, I. S.; Nurunnabi, M.; Park, H.; Lee, K. Y.; Moon, S. H.; Kim, K. S.; Kang, S. W.; Huh, K. M. Bioinspired Tuning of Glycol Chitosan for 3D Cell Culture. Npg Asia Mater. 2016, 8, e309.
  •  
  • 31. Lin, Z.; Jiang, S.; Ye, X.; Dai, M.; Yang, G.; Liu, L. Antimicrobial Curcumin Nanoparticles Downregulate Joint Inflammation and Improve Osteoarthritis. Macromol. Res. 2023, 31, 1179-1187.
  •  
  • 32. Guo, J.; Sun, W.; Kim, J. P.; Lu, X.; Li, Q.; Lin, M.; Mrowczynski, O.; Rizk, E. B.; Cheng, J.; Qian, G. Development of Tannin-inspired Antimicrobial Bioadhesives. Acta Biomater. 2018, 72, 35-44.
  •  
  • 33. Chen, C.; Yang, H.; Yang, X.; Ma, Q. Tannic Acid: A Crosslinker Leading to Versatile Functional Polymeric Networks: A Review. RSC Adv. 2022, 12, 7689-7711.
  •  
  • 34. Park, S. Y.; Kim, S.; Shin, S. Y.; Cho, W. K.; Huh, K. M. Enhanced Hexanoyl Glycol Chitosan/tannic Acid Thermogels: Customizable Physico-mechanical and Biofunctional Characteristics for Biomedical Applications. Chem. Eng. J. 2024, 493, 152286.
  •  
  • 35. Jafari, H.; Ghaffari-Bohlouli, P.; Niknezhad, S. V.; Abedi, A.; Izadifar, Z.; Mohammadinejad, R.; Varma, R. S.; Shavandi, A. Tannic Acid: A Versatile Polyphenol for Design of Biomedical Hydrogels. J. Mater. Chem. B 2022, 10, 5873-5912.
  •  
  • 36. Xu, J.; Chen, T.-Y.; Tai, C.-H.; Hsu, S.-H. Bioactive Self-healing Hydrogel Based on Tannic Acid Modified Gold Nano-crosslinker as An Injectable Brain Implant for Treating Parkinson’s Disease. Biomater. Res. 2023, 27, 8.
  •  
  • 37. Liu, Z.; Zhang, S.; Ran, Y.; Geng, H.; Gao, F.; Tian, G.; Feng, Z.; Xi, J.; Ye, L.; Su, W. Nanoarchitectonics of Tannic Acid Based Injectable Hydrogel Regulate the Microglial Phenotype to Enhance Neuroplasticity for Poststroke Rehabilitation. Biomater. Res. 2023, 27, 108.
  •  
  • 38. Shin, M.; Kim, K.; Shim, W.; Yang, J. W.; Lee, H. Tannic Acid as a Degradable Mucoadhesive Compound. ACS Biomater. Sci. Eng. 2016, 2, 687-696.
  •  
  • 39. Kim, E. Y.; Lee, E. J.; Kim, R. E.; Kil, T. Y.; Kim, M. K. Evaluation of Stability and Safety of Equine Mesenchymal Stem Cells Derived from Amniotic Fluid for Clinical Application. Front. Vet. Sci. 2024, 11, 1330009.
  •  
  • 40. Park, S. Y.; Kim, S.; Shin, S. Y.; Cho, W. K.; Huh, K. M. Enhanced Hexanoyl Glycol Chitosan/tannic Acid Thermogels: Customizable Physico-mechanical and Biofunctional Characteristics for Biomedical Applications. Chem. Eng. J. 2024, 493, 152286.
  •  
  • 41. Kumar, J.; Purwar, R. Injectable Mesquite Gum and Carboxymethyl Chitosan Hydrogel Using Schiff Base Crosslinks: A Versatile Platform for Drug Delivery in Wound Care. Macromol. Res. 2024, 32, 1237-1254.
  •  
  • 42. Naeem, A.; Yu, C.; Zhu, W.; Chen, X.; Wu, X.; Chen, L.; Zang, Z.; Guan, Y. Gallic Acid-Loaded Sodium Alginate-Based (Polyvinyl Alcohol-Co-Acrylic Acid) Hydrogel Membranes for Cutaneous Wound Healing: Synthesis and Characterization. Molecules 2022, 27,8397.
  •  
  • 43. Park, S. G.; Li, M. X.; Cho, W. K.; Joung, Y. K.; Huh, K. M. Thermosensitive Gallic Acid-conjugated Hexanoyl Glycol Chitosan as a Novel Wound Healing Biomaterial. Carbohydr. Polym. 2021, 260, 117808.
  •  
  • 44. Cho, I. S.; Oh, H. M.; Cho, M. O.; Jang, B. S.; Cho, J. K.; Park, K. H.; Kang, S. W.; Huh, K. M. Synthesis and Characterization of Thiolated Hexanoyl Glycol Chitosan as a Mucoadhesive Thermogelling Polymer. Biomater. Res. 2018, 22, 30.
  •  
  • 45. Hong, K. H. Polyvinyl Alcohol/tannic Acid Hydrogel Prepared by a Freeze-thawing Process for Wound Dressing Applications. Polym. Bull. 2017, 74, 2861-2872.
  •  
  • 46. Azadikhah, F.; Karimi, A. R.; Yousefi, G. H.; Hadizadeh, M. Dual Antioxidant-photosensitizing Hydrogel System: Cross-linking of Chitosan with Tannic Acid for Enhanced Photodynamic Efficacy. Int. J. Biol. Macromol. 2021, 188, 114-125.
  •  
  • 47. Gwak, M. A.; Hong, B. M.; Park, W. H. Hyaluronic Acid/tannic Acid Hydrogel Sunscreen with Excellent Anti-UV, Antioxidant, and Cooling Effects. Int. J. Biol. Macromol. 2021, 191, 918-924.
  •  
  • 48. Saleem, R.; Mohamed-Ahmed, S.; Elnour, R.; Berggreen, E.; Mustafa, K.; Al-Sharabi, N. Conditioned Medium from Bone Marrow Mesenchymal Stem Cells Restored Oxidative Stress-related Impaired Osteogenic Differentiation. Int. J. Mol. Sci. 2021, 22, 13458.
  •  
  • 49. Yamada, S.; Al-Sharabi, N.; Torelli, F.; Volponi, A. A.; Sandven, L.; Ueda, M.; Fristad, I.; Mustafa, K. Harnessing the Antioxidative Potential of Dental Pulp Stem Cell-conditioned Medium in Photopolymerized GelMA Hydrogels. Biomater. Res. 2024, 28, 0084.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2026; 50(1): 36-48

    Published online Jan 25, 2026

  • 10.7317/pk.2026.50.1.36
  • Received on Jun 9, 2025
  • Revised on Sep 6, 2025
  • Accepted on Sep 26, 2025

Correspondence to

  • Eun Young Kim** , Min Kyu Kim**, *** , and Kang Moo Huh*, ****
  • **MKbiotech Inc., 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    ***Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    ****Department of Polymer Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea

  • E-mail: key@mkbiotech.co.kr, kminkyu@cnu.ac.kr, khuh@cnu.ac.kr