• Polyhydroxyalkanoate Production from Food Waste Using Bacillus megaterium
  • Humera Arshad# , Farrukh Jamil# , Rana Umer Hayat, Muhammad Qaisar Hafeez, Amna Kousar, Muhammad Ibrahim, and Muhammad Asif Rasheed

  • Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan

  • Bacillus megaterium를 활용한 음식물 쓰레기에서 Polyhydroxyalkanoate 제조
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Koller, M. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications. Molecules. 2018, 23.
  •  
  • 2. Braunegg, G.; Bona, R.; Koller, M. Sustainable Polymer Production. Polym. Plastics Technol. Eng. 2004, 43, 1779-1793.
  •  
  • 3. Zhang, Y.; Wusiman, A.; Liu, X.; Wan, C.; Lee, DJ.; Tay, J. Polyhydroxyalkanoates (PHA) Production from Phenol in An Acclimated Consortium: Batch Study and Impacts of Operational Conditions. J. Biotechnol. 2018, 267, 36-44.
  •  
  • 4. Costa, S. S.; Miranda, A. L.; de Morais, M. G.; Costa, J. A. V.; Druzian, J. I. Microalgae as Source of Polyhydroxyalkanoates (PHAs) - A Review. Int. J. Biological Macromol. 2019, 131, 536-47.
  •  
  • 5. Anjum, A.; Zuber, M.; Zia, K. M.; Noreen, A.; Anjum, M. N.; Tabasum, S. Microbial Production of Polyhydroxyalkanoates (PHAs) and Its Copolymers: A Review of Recent Advancements. Int. J. Biological Macromol. 2016, 89, 161-74.
  •  
  • 6. Amaro, T.; Rosa, D.; Comi, G.; Iacumin, L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front. Microbiol. 2019, 10, 992.
  •  
  • 7. Arias, D. M.; Garcia, J.; Uggetti, E. Production of Polymers by Cyanobacteria Grown in Wastewater: Current Status, Challenges and Future Perspectives. New Biotechnol. 2020, 55, 46-57.
  •  
  • 8. Kadouri, D.; Jurkevitch, E.; Okon, Y.; Castro-Sowinski, S. Ecological and Agricultural Significance of Bacterial Polyhydroxyalkanoates. Crit. Rev. Microbiol. 2005, 31, 55-67.
  •  
  • 9. Wu, Q.; Wang, Y.; Chen, G. Q. Medical Application of Microbial Biopolyesters Polyhydroxyalkanoates. Artif. Cells Blood Substit. Immobil. Biotechnol. 2009, 37, 1-12.
  •  
  • 10. Huang, Y. T.; Chen, P. L.; Semblante, G. U.; You, S. J. Detection of Polyhydroxyalkanoate-accumulating Bacteria from Domestic Wastewater Treatment Plant Using Highly Sensitive PCR Primers. J. Microbiol. Biotechnol. 2012, 22, 1141-1147.
  •  
  • 11. Shrivastav, A.; Kim, H. Y.; Kim, Y. R. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System. BioMed Res. Int. 2013, 2013, 581684.
  •  
  • 12. Brigham, C. J.; Kurosawa, K.; Rha, C.; Sinskey, A. J. Bacterial Carbon Storage to Value Added Products. J. Microb. Biochem. Technol. 2011, 83, 1-13.
  •  
  • 13. Budde, C. F.; Riedel, S. L.; Willis, L. B.; Rha, C.; Sinskey, A. J. Production of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Plant Oil by Engineered Ralstonia Eutropha Strains. Appl. Environ. Microbiol. 2011, 77, 2847-2854.
  •  
  • 14. Singh, A. K.; Mallick, N. Advances in Cyanobacterial Polyhydr- oxyalkanoates Production. FEMS Microbiol. Lett. 2017, 364.
  •  
  • 15. Lim, J.; You, M.; Li, J.; Li, Z. Emerging Bone Tissue Engineering via Polyhydroxyalkanoate (PHA)-based Scaffolds. Mater. Sci. Eng. C 2017, 79, 917-929.
  •  
  • 16. Grigore, M. E.; Grigorescu, R. M.; Iancu, L.; Ion, R. M.; Zaharia, C.; Andrei, E. R. Methods of Synthesis, Properties and Biomedical Applications of Polyhydroxyalkanoates: A Review. J. Biomater. Sci. Polym. Ed. 2019, 30, 695-712.
  •  
  • 17. Cammas, S.; Bear, M. M.; Moine, L.; Escalup, R.; Ponchel, G.; Kataoka, K.; Guérin, P. Polymers of Malic Acid and 3-alkylmalic Acid as Synthetic PHAs in the Design of Biocompatible Hydrolyzable Devices. Int. J. Biol. Macromol. 1999, 25, 273-282.
  •  
  • 18. Niamsiri, N.; Delamarre, S. C.; Kim, Y. R.; Batt, C. A. Engineering of Chimeric Class II Polyhydroxyalkanoate Synthases. Appl. Environ. Microbiol. 2004, 70, 6789-6799.
  •  
  • 19. Grage, K.; Jahns, A. C.; Parlane, N.; Palanisamy, R.; Rasiah, I. A.; Atwood, J. A.; Rehm, B. H. Bacterial Polyhydroxyalkanoate Granules: Biogenesis, Structure, and Potential Use as Nano-/micro-beads in Biotechnological and Biomedical Applications. Biomacromolecules. 2009, 10, 660-669.
  •  
  • 20. Wei, X.; Hu, Y. J.; Xie, W. P.; Lin, R. L.; Chen, G. Q. Influence of poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on Growth and Osteogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells. J. Biomed. Mater. Res. A 2009, 90, 894-905.
  •  
  • 21. Ray, S.; Kalia, V. C. Biomedical Applications of Polyhydroxyalkanoates. Indian J. Microbiol. 2017, 57, 261-269.
  •  
  • 22. Nomura, C. T.; Tanaka, T.; Gan, Z.; Kuwabara, K.; Abe, H.; Takase, K.; Taguchi, K.; Doi, Y. Effective Enhancement of Short-chain-length-medium-chain-length Polyhydroxyalkanoate Copolymer Production by Coexpression of Genetically Engineered 3-ketoacyl-acyl-carrier-Protein Synthase III (fabH) and Polyhydroxyalkanoate Synthesis Genes. Biomacromolecules 2004, 5, 1457-1464.
  •  
  • 23. Matsumoto, K.; Murata, T.; Nagao, R.; Nomura, C. T.; Arai, S.; Arai, Y.; Takase, K.; Nakashita, H.; Taguchi, S.; Shimada, H. Production of Short-chain-length/medium-chain-length Polyhydroxyalkanoate (PHA) Copolymer in the Plastid of Arabidopsis Thaliana Using an Engineered 3-ketoacyl-acyl Carrier Protein Synthase III. Biomacromolecules 2009, 10, 686-690.
  •  
  • 24. Zinn, M.; Witholt, B.; Egli, T. Occurrence, Synthesis and Medical Application of Bacterial Polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 2001, 53, 5-21.
  •  
  • 25. Chen, G. Q. A Microbial Polyhydroxyalkanoates (PHA) Based Bio- and Materials Industry. Chem. Soc. Rev. 2009, 38, 2434-2446.
  •  
  • 26. Mannina, G.; Presti, D.; Montiel-Jarillo, G.; Carrera, J.; Suarez-Ojeda, M. E. Recovery of Polyhydroxyalkanoates (PHAs) from Wastewater: A Review. Bioresour. Technol. 2020, 297, 122478.
  •  
  • 27. Yao, J.; Xiao, X. Y.; Wang, M.; Zhang, Q.; Chen, Y.; Gou, M.; Xia, Z. Y.; Tang, Y. Q. A Review of Low-cost Production of Polyhydroxyalkanoates: Strategies, Challenges, and Perspectives. Bioresour. Technol. 2025, 433, 132745.
  •  
  • 28. Lau, N. S.; Sudesh, K. Revelation of the Ability of Burkholderia sp. USM (JCM 15050) PHA Synthase to Polymerize 4-hydroxybutyrate Monomer. AMB Express 2012, 2, 41.
  •  
  • 29. Berlanga, M.; Minana-Galbis, D.; Domenech, O.; Guerrero, R. Enhanced Polyhydroxyalkanoates Accumulation by Halomonas spp. in Artificial Biofilms of Alginate Beads. Int. Microbiol. 2012, 15, 191-199.
  •  
  • 30. Johnston, B.; Jiang, G.; Hill, D.; Adamus, G.; Kwiecien, I.; Zieba, M.; Sikorska, W.; Green, M.; Kowalczuk, M.; Radecka, I. The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production. Bioengineering 2017, 4, 3.
  •  
  • 31. Biernacki, M.; Marzec, M.; Roick, T.; Patz, R.; Baronian, K.; Bode, R.; Kunze, G. Enhancement of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Accumulation in Arxula Adeninivorans by Stabilization of Production. Microb. Cell Fact. 2017, 16, 144.
  •  
  • 32. Yang, C.; Zhang, W.; Liu, R.; Zhang, C.; Gong, T.; Li, Q.; Wang, S.; Song, C. Analysis of Polyhydroxyalkanoate (PHA) Synthase Gene and PHA-producing Bacteria in Activated Sludge that Produces PHA Containing 3-hydroxydodecanoate. FEMS Microbiol. Lett. 2013, 346, 56-64.
  •  
  • 33. Srivastava, S. K.; Tripathi, A. D. Effect of Saturated and Unsaturated Fatty Acid Supplementation on Bio-plastic Production Under Submerged Fermentation. Biotech 2013, 3, 389-397.
  •  
  • 34. Chen, G. Q.; Jiang, X. R. Engineering Bacteria for Enhanced Polyhydroxyalkanoates (PHA) Biosynthesis. Synth. Syst. Biotechnol. 2017, 2, 192-197.
  •  
  • 35. Spiekermann, P.; Rehm, B. H.; Kalscheuer, R.; Baumeister, D.; Steinbuchel, A. A Sensitive, Viable-colony Staining Method Using Nile Red for Direct Screening of Bacteria That Accumulate Polyhydroxyalkanoic Acids and Other Lipid Storage Compounds. Arch. Microbiol. 1999, 171, 73-80.
  •  
  • 36. Sambrook, J.; Russell, D. W. Molecular Cloning: A Laboratory Manual. 3rd ed.; Cold Spring Harbor Laboratory Press: New York, 2001.
  •  
  • 37. Ramsay, J. A.; Berger, E.; Ramsay, B. A.; Chavarie, C. Recovery of Poly-3-hydroxyalkanoic Acid Granules by a Surfactant Hypochlorite Treatment. Biotechnol. Tech. 1990, 4, 221-226.
  •  
  • 38. Jacquel, N.; Lo, C. W.; Wei, Y. H.; Wu, H. S.; Wang, S. S. Isolation and Purification of Bacterial Poly(3-hydroxyalkanoates). Biochem. Eng. J. 2008, 39, 15-27.
  •  
  • 39. Tajima, K.; Igari, T.; Nishimura, D.; Nakamura, M.; Satoh, Y.; Munekata, M. Isolation and Characterization of Bacillus sp. INT005 Accumulating Polyhydroxyalkanoate (PHA) from Gas Field Soil. J. Biosci. Bioeng. 2003, 95, 77-81.
  •  
  • 40. Liu, M.; Gonzalez, J. E.; Willis, L. B.; Walker, G. C. A Novel Screening Method for Isolating Exopolysaccharide-deficient Mutants. Appl. Environ. Microbiol. 1998, 64, 4600-4602.
  •  
  • 41. Chang, Y. C.; Reddy, M. V.; Imura, K.; Onodera, R.; Kamada, N.; Sano, Y. Two-stage Polyhydroxyalkanoates (PHA) Production from Cheese Whey Using Acetobacter Pasteurianus C1 and Bacillus sp. CYR1. Bioengineering 2021, 8, 11.
  •  
  • 42. Vu, D. H.; Akesson, D.; Taherzadeh, M. J.; Ferreira, J. A. Recycling Strategies for Polyhydroxyalkanoate-based Waste Materials: An Overview. Bioresour. Technol. 2020, 298, 122393.
  •  
  • 43. Nielsen, C.; Rahman, A.; Rehman, A. U.; Walsh, M. K.; Miller, C. D. Food Waste Conversion to Microbial Polyhydroxyalkanoates. Microb. Biotechnol. 2017, 10, 1338-1352.
  •  
  • 44. Tsang, Y. F.; Kumar, V.; Samadar, P.; Yang, Y.; Lee, J.; Ok, Y. S.; Song, H.; Kim, K. H.; Kwon, E. E.; Jeon, Y. J. Production of Bioplastic Through Food Waste Valorization. Environ. Int. 2019, 127, 625-644.
  •  
  • 45. Zheng, Z.; Deng, Y.; Lin, X. S.; Zhang, L. X.; Chen, G. Q. Induced Production of Rabbit Articular Cartilage-derived Chondrocyte Collagen II on Polyhydroxyalkanoate Blends. J. Biomater. Sci. Polym. Ed. 2003, 14, 615-624.
  •  
  • 46. Obruca, S.; Petrik, S.; Benesova, P.; Svoboda, Z.; Eremka, L.; Marova, I. Utilization of Oil Extracted from Spent Coffee Grounds for Sustainable Production of Polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014, 98, 5883-5890.
  •  
  • 47. Pan, L.; Li, J.; Wang, R.; Wang, Y.; Lin, Q.; Li, C.; Wang, Y. Biosynthesis of Polyhydroxyalkanoate From Food Waste Oil by Pseudomonas Alcaligenes with Simultaneous Energy Recovery from Fermentation Wastewater. Waste Manag. 2021, 131, 268-276.
  •  
  • 48. Xu, Z.; Pan, C.; Li, X.; Hao, N.; Zhang, T.; Gaffrey, M. J.; Pu, Y.; Cort, J. R.; Ragauskas, A. J.; Qian, W. J.; Yang, B. Enhancement of Polyhydroxyalkanoate Production by co-feeding Lignin Derivatives with Glycerol in Pseudomonas Putida KT2440. Biotechnol. Biofuels 2021, 14, 11.
  •  
  • 49. Silva-Queiroz, S. R.; Silva, L. F.; Pradella, J. G.; Pereira, E. M.; Gomez, J. G. PHA (MCL) Biosynthesis Systems in Pseudomonas Aeruginosa and Pseudomonas Putida Strains Show Differences on Monomer Specificities. J. Biotechnol. 2009, 143, 111-118.
  •  
  • 50. Khamkong, T.; Poomipuk, W.; Lumyong, S. Optimization of Production of Polyhydroxyalkanoates (PHAs) from Newly Isolated Ensifer sp. Strain HD34 by Response Surface Methodology. Processes 2022, 10, 1632.
  •  
  • 51. Patil, T. D.; Ghosh, S.; Agarwal, A.; Patel, S. K. S.; Tripathi, A. D.; Mahato, D. K.; Kumar, P.; Slama, P.; Pavlik, A.; Haque, S. Author Correction: Production, Optimization, Scale up and Characterization of Polyhydoxyalkanoates Copolymers Utilizing Dairy Processing Waste. Sci. Rep. 2024, 14, 10919.
  •  
  • 52. Gutschmann, B.; Maldonado Simoes, M.; Schiewe, T.; Schroter, E. S.; Munzberg, M.; Neubauer, P.; Bockisch, A.; Riedel, S. L. Continuous Feeding Strategy for Polyhydroxyalkanoate Production From Solid Waste Animal Fat at Laboratory- and Pilot-scale. Microb. Biotechnol. 2023, 16, 295-306.
  •  
  • 53. Acedos, M. G.; Moreno-Cid, J.; Verdu, F.; Gonzalez, J. A.; Tena, S.; Lopez, J. C. Exploring the Potential of Slaughterhouse Waste Valorization: Development and Scale-up of a New Bioprocess for Medium-chain Length Polyhydroxyalkanoates Production. Chemosphere 2022, 287, 132401.
  •  
  • 54. Van Thuoc, D.; My, D. N.; Loan, T. T.; Sudesh, K. Utilization of Waste Fish Oil and Glycerol as Carbon Sources for Polyhydroxyalkanoate Production by Salinivibrio sp. M318. Int. J. Biol. Macromol. 2019, 141, 885-892.
  •  
  • 55. Morya, R.; Andrianantenaina, F. H.; Pandey, A. K.; Yoon, Y. H.; Kim, S. H. Polyhydroxyalkanoate Production from Rice Straw Hydrolysate: Insights Into Feast-famine Dynamics and Microbial Community Shifts. Chemosphere 2023, 341, 139967.
  •  
  • 56. Ali, I.; Jamil, N. Enhanced Biosynthesis of Poly(3-hydroxybutyrate) from Potato Starch by Bacillus Cereus Strain 64-INS in a Laboratory-scale Fermenter. Prep. Biochem. Biotechnol. 2014, 44, 822-833.
  •  
  • 57. Rysbek, A.; Ramankulov, Y.; Kurmanbayev, A.; Richert, A.; Abeldenov, S. Comparative Characterization and Identification of Poly-3-hydroxybutyrate Producing Bacteria with Subsequent Optimization of Polymer Yield. Polymers 2022, 14, 353.
  •  
  • 58. Ong, S. Y.; Sudesh, K. Effects of Polyhydroxyalkanoate Degradation on Soil Microbial Community. Polym. Degrad. Stab. 2016, 131, 9-19.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2026; 50(1): 60-68

    Published online Jan 25, 2026

  • 10.7317/pk.2026.50.1.60
  • Received on Jun 11, 2025
  • Revised on Sep 12, 2025
  • Accepted on Sep 15, 2025

Correspondence to

  • Muhammad Asif Rasheed
  • Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan

  • E-mail: asif.rasheed@cuisahiwal.edu.pk