• Study on the Characteristics of Silica Aerogel-Polystyrene Depending on the Surfactant Content and the Characteristics of Composite Polyurethane Foam Using It
  • Miye Kim and Sang-Bum Kim

  • Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeontong-gu, Suwon 16227, Korea

  • 계면활성제 함량에 따른 Silica Aerogel-Polystyrene의 특성과 이를 첨가한 복합 폴리우레탄 폼의 물성 연구
  • 김미예 · 김상범

  • 경기대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Yoo, C. S.; Chun, J. H. Application of Polyurethane Adhesives. Polymer Science and Technology. 1999, 10, 578-588.
  •  
  • 2. Choi, H. B.; Kim, S. B. Effect of Silane Coupling Agent on Mechanical Properties of Glass Fiber Reinforced Polyurethane Foam. Polym. Korea. 2023, 47, 547-552.
  •  
  • 3. Tuyet, M. N. H.; Tan, B. N.; Tuan, A. N.; Lam, H. P.; Dai, H. N.; Dang, M. N.; Dong, Q. H.; Oh, E. Y.; Suhr, J. H. Novel High-performance Sustainable Polyurethane Nanocomposite Foams: Fire Resistance, Thermal Stability, Thermal Conductivity, and Mechanical Properties. Chem. Eng. J. 2023, 474, 145585.
  •  
  • 4. Kim, J. M.; Kim, J. H.; Ahn, J. H.; Kim, J. D.; Park, S. K.; Park, K. H.; Lee, J. M. Synthesis of Nanoparticle-enhanced Polyurethane Foams and Evaluation of Mechanical Characteristics. Compos. Part B: Eng. 2018, 136, 28-38.
  •  
  • 5. Hossieny, N.; Shrestha, S. S.; Owusu, O. A.; Natal, M.; Benson, R.; Desjarlais, A. Improving the Energy Efficiency of a Refrigerator-freezer Through the Use of a Novel Cabinet/door Liner Based on Polylactide Biopolymer. Appl. Energy. 2019, 235, 1-9.
  •  
  • 6. Akdogan, E.; Erdem, M.; Ureyen, M. E.; Kaya, M.; Rigid Polyurethane Foams with Halogen‐free Flame Retardants: Thermal Insulation, Mechanical, and Flame Retardant Properties. J. Appl. Polym. Sci. 2020, 137, 316-329.
  •  
  • 7. Kim, K. H.; Park, S. H.; Hwang, S. W. Composition for Rigid Polyurethane Foam and Rigid Polyurethane Foam Produced Using the Same. U.S. Patent 2013, 8,367,197.
  •  
  • 8. Ahn, W. S. Effects of GTR and Unexpanded Expancel Powders on Thermal Conducting Characteristics of Rigid Polyurethane Foams. J. Korea Academia-Industrial Cooperation Society. 2012, 13, 2846-2851.
  •  
  • 9. Kuranska, M.; Prociak, A.; Michalowski, S.; Zawdzinska, A. The Influence of Blowing Agents Type on Foaming Process and Properties of Rigid Polyurethane Foams. Polimery. 2018, 63, 672-678.
  •  
  • 10. Thi, V. V. D.; Van, H. V. L.; Ngoc, U. N. T.; Hue. N. D.; Grllet, A. C.; Chi, N. H. T. The Influence of Nano‐silica on the Thermal Conductivity of Polyurethane Foam. J. Appl. Polym. Sci. 2021, 138, 50715.
  •  
  • 11. Yun, W. H.; Kim, S. B. Analysis of Foaming Characteristics and Physical Properties of Polyurethane Foam according to Foaming Agents. Polym. Korea. 2021, 45, 406-413.
  •  
  • 12. Zhang, H.; Fang, W. Z.; Li, Y. M.; Tao, W. Q. Experimental Study of the Thermal Conductivity of Polyurethane Foams. Appl. Thermal. Eng. 2017, 115, 528-538.
  •  
  • 13. Santiago-Calvo, M.; Tirado-Mediavilla, J.; Rauhe, J. C.; Jensen, L. R.; Ruiz-Herrero, J. L.; Villafne, F.; Rodriguez-Perez, M. A. Evaluation of the Thermal Conductivity and Mechanical Properties of Water Blown Polyurethane Rigid Foams Reinforced with Carbon Nanofibers. Europ. Polym. J. 2018, 108, 98-106.
  •  
  • 14. Rao, A. P.; Rao, A. V. Microstructural and Physical Properties of the Ambient Pressure Dried Hydrophobic Silica Aerogels with Various Solvent Mixtures. J. Non-crystalline Solids. 2008, 354, 10-18.
  •  
  • 15. Gurav, J. L.; Jung, I. K.; Park, H. H.; Kang, E. S.; Nadargi, D. Y. Silica Aerogel: Synthesis and Applications. J. Nanomaterials. 2010, DOI:10.1155/2010/409310.
  •  
  • 16. Bananifard, H.; Ashjari, M.; Niazi, Z.; Etemadi, M. Efficient Reinforcement of Wet Gel by Embedded Polymer as Newly Approach for Silica Aerogel. Polym. Adv. Technol. 2020, 31, 3174-3181.
  •  
  • 17. Hallim, Z. A. A.; Yajid, M. A. M.; Idris, M. H.; Hamdan, H. Effects of Silica Aerogel Particle Sizes on the Thermal–mechanical Properties of Silica Aerogel–unsaturated Polyester Composites. Plastics. Rubber Compos. 2017, 46, 184-192.
  •  
  • 18. Hallim, Z. A. A.; Yajid, M. A. M.; Idris, M. H.; Hamdan, H. Physiochemical and Thermal Properties of Silica Aerogel–Poly Vinyl Alcohol/Core–Shell Structure Prepared Using Fluidized Bed Coating Process for Thermal Insulation Applications. Mater. Chem. Phys. 2018, 215, 269-276.
  •  
  • 19. Lee, D. I.; Ha, Y. H.; Jeon, H.; Kim, S. H. Preparation and Properties of Polyurethane Composite Foams with Silica-based Fillers. Appl. Sci. 2022, 12, 7418.
  •  
  • 20. Zhao, J.; Du, F.; Cui, W.; Zhu, P.; Zhou, X.; Xie, X. Effect of Silica Coating Thickness on the Thermal Conductivity of Polyurethane/SiO2 Coated Multiwalled Carbon Nanotube Composites. Composites Part A: Appl. Sci. Manuf. 2014, 58, 1-6.
  •  
  • 21. Li, T. T.; Ling, L.; Wang, X.; Jiang, Q.; Liu, B.; Lin, J. H.; Lou, C. W. Mechanical, Acoustic, and Thermal Performances of Shear Thickening Fluid–filled Rigid Polyurethane Foam Composites: Effects of Content of Shear Thickening Fluid and Particle Size of Silica. J. Appl. Polym. Sci. 2019, 136, 47359.
  •  
  • 22. Stanzione, M.; Oliviero, M.; Cocca, M.; Errico, M. E.; Gentile, G.; Avella, M.; Lavorgna, M.; Buonocore, G. G.; Verdolotti, L. Tuning of Polyurethane Foam Mechanical and Thermal Properties Using Ball-milled Cellulose. Carbohydr. Polym. 2020, 231, 115772.
  •  
  • 23. Najjar, T. A.; Allam, N. K.; Sawy, E. N. El. Anionic/nonionic Surfactants for Controlled Synthesis of Highly Concentrated Sub-50 nm Polystyrene Spheres. Nanoscale Adv. 2021, 3, 5626-5635.
  •  
  • 24. Chen, M.; Qin, L.; Liu, Y.; Zhang, F. Controllable Preparation of Polymer Brushes From Mesoporous Silica SBA-15 via Surface-initiated ARGET ATRP. Microporous and Mesoporous Mater. 2018, 263, 158-164.
  •  
  • 25. Sobani, M.; Asl, V. H.; Kalajahi, M. S.; Mamaqani, H. R.; Langari, S. A. M.; Khezri, K. “Grafting through” Approach for Synthesis of Polystyrene/silica Aerogel Nanocomposites by In Situ Reversible Addition-fragmentation Chain Transfer Polymerization. J. Sol-gel Sci. Technol. 2013, 66, 337-344.
  •  
  • 26. Ding, X.; Zhao, J.; Liu, Y.; Zhang, H.; Wang, Z. Silica Nanoparticles Encapsulated by Polystyrene via Surface Grafting and In Situ Emulsion Polymerization. Mater. Lett. 2004, 58, 3126-3130.
  •  
  • 27. Yin, G.; Zheng, Z.; Wang, H.; Du, Q.; Zhang, H. Preparation of Graphene Oxide Coated Polystyrene Microspheres by Pickering Emulsion Polymerization. J. Colloid and Interface Sci. 2013, 394, 192-198.
  •  
  • 28. Martinez, C. R.; Iverson, B. L. Rethinking the term “pi-stacking”. Chem. Sci. 2012, 3, 2191-2201.
  •  
  • 29. Feng, Q.; Chen, K.; Ma, D.; Lin, H.; Liu, Z.; Qin, S.; Luo, Y. Synthesis of High Specific Surface Area Silica Aerogel From Rice Husk Ash via Ambient Pressure Drying. Colloids and Surfaces A. Physicochemical and Eng. Asp. 2018, 539, 399-406.
  •  
  • 30. Honeywell, Solstice® Enhance Product Brochure. Honeywell Adv. Mater. 2022, 1-8.
  •  
  • 31. Le, S. J.; An, E. M.; Kim, B. G.; Cho, S. B. Talc as An Environmentally-Friendly Pitch and Stickies Controlling Agent. J. Mineralogical Soc. Korea. 2010, 23, 429-437.
  •  
  • 32. Pardo-Alonso, S.; Solorzano, E.; Estravis, S.; Rodriguez-Perez, M. A.; de Saja, J. A. In Situ Evidence of the Nanoparticle Nucleating Effect in Polyurethane–nanoclay Foamed Systems. Soft Matter. 2012, 8, 11262-11270.
  •  
  • 33. Colton, J. S.; Suh, N. P. The Nucleation of Microcellular Thermoplastic Foam with Additives: Part I: Theoretical Considerations. Polym. Eng. Sci. 1987, 27, 485-492.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2026; 50(1): 136-143

    Published online Jan 25, 2026

  • 10.7317/pk.2026.50.1.136
  • Received on Aug 6, 2025
  • Revised on Oct 20, 2025
  • Accepted on Oct 22, 2025

Correspondence to

  • Sang-Bum Kim
  • Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeontong-gu, Suwon 16227, Korea

  • E-mail: ksb@kyonggi.ac.kr