• Facile Fabrication of Collector-Free Supercapacitors Based on Silver Nanowire–Activated Carbon Composites
  • Myounggun Kim*, **,# , Seung-Yul Lee*, **,# , Moon Jong Han***, ****, Da-Seul Kim*, **,† , and Ju-Hyung Kim*, **,†

  • *Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
    **Department of Chemical Engineering, Ajou University, Suwon 16499, Korea
    ***Department of Semiconductor & Electronic Engineering, Gachon University, Seongnam 13120, Korea
    ****School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

  • 은 나노 와이어-활성탄 복합체 기반 집전체 없는 슈퍼커패시터의 간소화된 제작 공정
  • 김명건*, **,# · 이승율*, **,# · 한문종***, **** · 김다슬*, **,† · 김주형*, **,†

  • *아주대학교 에너지시스템학과, **아주대학교 화학공학과, ***가천대학교 반도체공학과, ****조지아공과대학교 재료공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Kim, J.; Kumar, R.; Bandodkar, A. J.; Wang, J. Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Adv. Electron. Mater. 2017, 3, 1600260.
  •  
  • 2. Cima, M. J. Next-generation Wearable Electronics. Nat. Biotechnol. 2014, 32, 642-643.
  •  
  • 3. Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent Advances in Flexible and Stretchable Bio‐electronic Devices Integrated with Nanomaterials. Adv. Mater. 2016, 28, 4203-4218.
  •  
  • 4. Fang, W.; Zhao, J.; Zhang, W.; Chen, P.; Bai, Z.; Wu, M. Recent Progress and Future Perspectives of flexible Zn-air batteries. J. Alloys Compd. 2021, 869, 158918.
  •  
  • 5. Hassan, M.; Abbas, G.; Li, N.; Afzal, A.; Haider, Z.; Ahmed, S.; Xu, X.; Pan, C.; Peng, Z. Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Adv. Mater. Technol. 2022, 7, 2100773.
  •  
  • 6. Li, M.; Lu, J.; Chen, Z.; Amine, K., 30 years of Lithium‐ion Batteries. Adv. Mater. 2018, 30, 1800561.
  •  
  • 7. Kim, T.; Song, W.; Son, D.-Y.; Ono, L. K.; Qi, Y. Lithium-ion Batteries: Outlook on Present, Future, and Hybridized Technologies. J. Mater. Chem. A 2019, 7, 2942-2964.
  •  
  • 8. Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci. 2017, 3, 1063-1069.
  •  
  • 9. Zhang, H.; Zhang, J.; Gao, X.; Wen, L.; Li, W.; Zhao, D. Advances in Materials and Structures of Supercapacitors. Ionics 2022, 28, 515-531.
  •  
  • 10. Khan, M. I.; Gilani, R.; Hafeez, J.; Ayoub, R.; Zahoor, I.; Saira, G. Advantages and Disadvantages of Lithium-ion Batteries. In NanostructuredLithium-Ion Battery Materials: Synthesis, Characterization, and Applications; Thomas, S., Gueye, A. B., Savadogo, O., Maria, H. J., Eds.; Elsevier: Amsterdam, 2025; pp 47-64.
  •  
  • 11. Olabi, A. G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M. A. Supercapacitors as Next Generation Energy Storage Devices: Properties and Applications. Energy 2022, 248, 123617.
  •  
  • 12. Iro, Z. S.; Subramani, C.; Dash, S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628-10643.
  •  
  • 13. Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent Advancements in Supercapacitor Technology. Nano Energy 2018, 52, 441-473.
  •  
  • 14. Karthikeyan, S.; Narenthiran, B.; Sivanantham, A.; Bhatlu, L. D.; Maridurai, T. Supercapacitor: Evolution and review. Mater. Today: Proc. 2021, 46, 3984-3988.
  •  
  • 15. Blomquist, N.; Wells, T.; Andres, B.; Bäckström, J.; Forsberg, S.; Olin, H. Metal-free Supercapacitor with Aqueous Electrolyte and Low-cost Carbon Materials. Sci. Rep. 2017, 7, 39836.
  •  
  • 16. Baskakov, S.; Baskakova, Y.; Lyskov, N.; Dremova, N.; Irzhak, A.; Kumar, Y.; Michtchenok, A.; Shulga, Y. Fabrication of Current Collector Using a Composite of Polylactic Acid and Carbon Nano-material for Metal-free Supercapacitors with Graphene Oxide Separators and Microwave Exfoliated Graphite Oxide Electrodes. Electrochim. Acta 2018, 260, 557-563.
  •  
  • 17. Liu, J.; Mirri, F.; Notarianni, M.; Pasquali, M.; Motta, N. High Performance All-carbon Thin Film Supercapacitors. J. Power Sources 2015, 274, 823-830.
  •  
  • 18. Yu, J.; Wu, J.; Wang, H.; Zhou, A.; Huang, C.; Bai, H.; Li, L. Metallic Fabrics as the Current Collector for High-performance Graphene-based Flexible Solid-state Supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 4724-4729.
  •  
  • 19. Tanwilaisiri, A.; Xu, Y.; Harrison, D.; Fyson, J.; Arier, M. A Study of Metal Free Supercapacitors Using 3D Printing. Int. J. Precis. Eng. Manuf. 2018, 19, 1071-1079.
  •  
  • 20. Ramadoss, A.; Wong, K. K.; Swain, N.; Mohanty, A.; Kirubavathi, K.; Selvaraju, K.; Schmidt Mende, L. Flexible, Lightweight, and Ultrabendable RuO2–MnO2/graphite Sheets for Supercapacitors. Energy Fuels 2022, 36, 11194-11204.
  •  
  • 21. Jung, S. Y.; Nah, B. R.; Cho, I. W.; Choi, J.; Yang, M. Improving Wettability and Adhesion of Carbon Cloth with Polydopamine for a Flexible Supercapacitor. Carbon Lett. 2022, 32, 329-337.
  •  
  • 22. Chen, B.; Wong, W.-Y. Introducing a Redox-active Ferrocenyl Moiety Onto a Polythiophene Derivative Towards High-performance Flexible All-solid-state Symmetric Supercapacitors. J. Mater. Chem. A 2022, 10, 7968-7977.
  •  
  • 23. Abdisattar, A.; Yeleuov, M.; Daulbayev, C.; Askaruly, K.; Tolynbekov, A.; Taurbekov, A.; Prikhodko, N. Recent Advances and Challenges of Current Collectors for Supercapacitors. Electrochem. Commun. 2022, 142, 107373.
  •  
  • 24. Guo, G.; Shen, L.; Li, X.; Cao, Y.; Sun, Y.; Xiong, Z. Tunable Reduction Degree of Stacked Lamellar rGO Film for Application in Flexible All-solid-state Supercapacitors. Diam. Relat. Mater. 2020, 106, 107845.
  •  
  • 25. Hu, M.; Zhang, H.; Hu, T.; Fan, B.; Wang, X.; Li, Z. Emerging 2D MXenes for Supercapacitors: Status, Challenges and Prospects. Chem. Soc. Rev. 2020, 49, 6666-6693.
  •  
  • 26. Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest Advances in Supercapacitors: From New Electrode Materials to Novel Device Designs. Chem. Soc. Rev. 2017, 46, 6816-6854.
  •  
  • 27. Panda, S.; Deshmukh, K.; Pasha, S. K.; Theerthagiri, J.; Manickam, S.; Choi, M. Y. MXene Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives. Coord. Chem. Rev. 2022, 462, 214518.
  •  
  • 28. Chen, Y.; Yang, H.; Han, Z.; Bo, Z.; Yan, J.; Cen, K.; Ostrikov, K. K. MXene-based Electrodes for Supercapacitor Energy Storage. Energy Fuels 2022, 36, 2390-2406.
  •  
  • 29. Frackowiak, E. Carbon Materials for Supercapacitor Application. Phys. Chem. Chem. Phys. 2007, 9, 1774-1785.
  •  
  • 30. Teo, E. Y. L.; Muniandy, L.; Ng, E.-P.; Adam, F.; Mohamed, A. R.; Jose, R.; Chong, K. F. High Surface Area Activated Carbon from Rice Husk as a High Performance Supercapacitor Electrode. Electrochim. Acta 2016, 192, 110-119.
  •  
  • 31. Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-doped Activated Carbon for a High Energy Hybrid Supercapacitor. Energy Environ. Sci. 2016, 9, 102-106.
  •  
  • 32. Xu, F.; Zhu, Y. Highly Conductive and Stretchable Silver Nanowire Conductors. Adv. Mater. 2012, 24, 5117-5122.
  •  
  • 33. Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955-2963.
  •  
  • 34. Tan, D.; Jiang, C.; Li, Q.; Bi, S.; Song, J. Silver Nanowire Networks with Preparations and Applications: A Review. J. Mater. Sci.: Mater. Electron. 2020, 31, 15669-15696.
  •  
  • 35. Yu, C.; Fang, S.; Chen, Y.; Wu, X.; Xu, R.; Chen, Y.; Feng, Y.; Shi, B.; Li, Q.; Cao, Z. High-performance Flexible All-solid-state Supercapacitors Integrated with Self-healing Hydrogel Electrolyte and Silver Nanowire Electrodes. Mater. Today Nano 2025, 30, 100619.
  •  
  • 36. Wang, B.; Zhao, X.; Liang, J.; Liu, J.; Yang, Y.; Zhang, M.; Yu, H.; Li, J.; Tong, Y.; Tang, Q. Microwave-welded and Photopolymer-embedded Silver Nanowire Electrodes for Skin-like Supercapacitors. ACS Appl. Energy Mater. 2022, 5, 10490-10500.
  •  
  • 37. Kim, T.; Park, C.; Samuel, E. P.; An, S.; Aldalbahi, A.; Alotaibi, F.; Yarin, A. L.; Yoon, S. S. Supersonically Sprayed Washable, Wearable, Stretchable, Hydrophobic, and Antibacterial rGO/AgNW Fabric for Multifunctional Sensors and Supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 10013-10025.
  •  
  • 38. Zhao, F.; Zheng, D.; Liu, Y.; Pan, F.; Deng, Q.; Qin, C.; Li, Y.; Wang, Z. Flexible Co(OH)2/NiOxHy@ Ni Hybrid Electrodes for High Energy Density Supercapacitors. Chem. Eng. J. 2021, 415, 128871.
  •  
  • 39. Cao, Y.; Zhang, J.; Yang, W.; Li, Y.; Chen, H.; Hao, Q.; Ma, X. Handy Preparation of a Carbon-Ni/NiO/Ni (OH)2 Composite and Its Application in High-performance Supercapacitors. Electrochim. Acta 2024, 497, 144618.
  •  
  • 40. Tao, Y.; Xie, X.; Lv, W.; Tang, D.-M.; Kong, D.; Huang, Z.; Nishihara, H.; Ishii, T.; Li, B.; Golberg, D. Towards Ultrahigh Volumetric Capacitance: Graphene Derived Highly Dense But Porous Carbons for Supercapacitors. Sci. Rep. 2013, 3, 2975.
  •  
  • 41. Dissanayake, K.; Kularatna-Abeywardana, D. A Review of Supercapacitors: Materials, Technology, Challenges, and Renewable Energy Applications. J. Energy Storage 2024, 96, 112563.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2026; 50(1): 161-166

    Published online Jan 25, 2026

  • 10.7317/pk.2026.50.1.161
  • Received on Sep 8, 2025
  • Revised on Oct 7, 2025
  • Accepted on Oct 11, 2025

Correspondence to

  • Da-Seul Kim*, ** , and Ju-Hyung Kim*, **
  • *Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
    **Department of Chemical Engineering, Ajou University, Suwon 16499, Korea

  • E-mail: kimda313@ajou.ac.kr, juhyungkim@ajou.ac.kr