• III-V Semiconductor Quantum Dot-Engineered TPU Nanocomposites: Synergistic Enhancement of Supercapacitor Performance
  • Eje Ko, Jong Seob Choi , and Jin-Heong Yim

  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheonandaero, Cheonan, Chungnam, 31080, Korea

  • III-V족 반도체 InP 양자점 및 전도성 하이브리드화 기반 TPU 나노복합체 전극을 이용한 슈퍼커패시터 성능 향상 연구
  • 고이제 · 최종섭 · 임진형

  • 공주대학교 공과대학 신소재공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Bhosale, V. S.; Bhosale, S. V. Advancements in Supercapacitors: Breaking Barriers and Enabling Amazing Applications. Chem. Sci. 2025, 16, 10159-10227.
  •  
  • 2. Dzikunu, P.; Appiah, E. S.; Arthur, E. K.; Akinwamide, S. O.; Gikunoo, E.; Fangnon, E. A. K.; Mensah-Darkwa, K.; Andrews, A.; Vilaça, P. Waste-to-carbon-based Supercapacitors for Renewable Energy Storage: Progress and Future Perspectives. Mater. Renew. Sustain. Energy 2025, 14, 8.
  •  
  • 3. Sharma, S.; Chand, P. Supercapacitor and Electrochemical Techniques: A Brief Review. Results Chem. 2023, 5, 100885.
  •  
  • 4. Christ, J.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/thermoplastic Polyurethane Nanocomposites. Mater. Des. 2017, 131, 394-401.
  •  
  • 5. Sahoo, P. K.; Kumarcg, N.; Jena, A.; Mishra, S.; Lee, C.-P.; Lee, S.-Y.; Park, S.-J. Recent Progress in Graphene and Its Derived Hybrid Materials for High-performance Supercapacitor Electrode Applications. RSC Adv. 2024, 14, 1284-1303.
  •  
  • 6. Manfo, T. A.; Laaksonen, H. A Review of Carbon-based Hybrid Materials for Supercapacitors. New Carbon Mater. 2025, 40, 81-110.
  •  
  • 7. Li, Y.; Shi, G.; Xu, C.; Zhang, Y.; Liu, B.; Huo, P. A Review of the Improved Electrochemical Property Achieved by the Incorporation of Transition Metal-based Quantum Dots Applied in Supercapacitors. J. Power Sources 2024, 619, 235200.
  •  
  • 8. Suman; Rani, G.; Ahlawat, R.; Kumar, H. Green Source-based Carbon Quantum Dots, Composites, and Key Factors for High-performance of Supercapacitors. J. Power Sources 2024, 617, 235170.
  •  
  • 9. Navidfar, A.; Peker, M. I.; Budak, E.; Unlu, C.; Trabzon, L. Carbon Quantum Dots Enhanced Graphene/carbon Nanotubes Polyurethane Hybrid Nanocomposites. Compos. B. Eng. 2022, 247, 110310.
  •  
  • 10. Seibert, J. R.; Keleş, Ö.; Wang, J.; Erogbogbo, F. Infusion of Graphene Quantum Dots to Modulate Thermal Conductivity and Dynamic Mechanical Properties of Polymers. Polymer 2019, 185, 121988.
  •  
  • 11. Gobi, N.; Vijayakumar, D.; Keleş, Ö.; Erogbogbo, F. Infusion of Graphene Quantum Dots to Create Stronger, Tougher, and Brighter Polymer Composites. ACS Omega 2017, 2, 4356-4362.
  •  
  • 12. Jiang, W.; He, H.; Wang, C.; Zhang, Y.; Lu, Y.; Zhang, Q.; Wang, S.; Zhang, X.; Hao, X.; Sun, M. Preparation of Coal-based Carbon Quantum Dots and Their Fluorescence Properties. Microchem. J. 2024, 207, 111818.
  •  
  • 13. Li, S.; Li, L.; Tu, H.; Zhang, H.; Silvester, D. S.; Banks, C. E.; Zou, G.; Hou, H.; Ji, X. The Development of Carbon Dots: From the Perspective of Materials Chemistry. Mater. Today 2021, 51, 188-207.
  •  
  • 14. Ozyurt, D.; Kobaisi, M. A.; Hocking, R. K.; Fox, B. Properties, Synthesis, and Applications of Carbon Dots: A Review. Carbon Trends 2023, 12, 100276.
  •  
  • 15. Wang, S.; Li, Y.; Chen, J.; Lin, O.; Niu, W.; Yang, C.; Tang, A. Development and Challenges of Indium Phosphide-based Quantum-dot Light-emitting Diodes. J. Photochem. Photobiol. C.2023, 55, 100588.
  •  
  • 16. Park, J.; Kim, T.; Kim, D. Charge Injection and Energy Transfer of Surface-engineered InP/ZnSe/ZnS Quantum Dots. Nanomaterials 2023, 13, 1159.
  •  
  • 17. Kim, Y. J.; Kim, D.-H.; Choi, J. S.; Yim, J.-H. A Multi-functional Ammonia Gas and Strain Sensor with 3D-printed Thermoplastic Polyurethane–polypyrrole Composites. Polymer 2022, 240, 124490.
  •  
  • 18. Tong, L.; Wang, X.-X.; He, X.-X.; Nie, G.-D.; Bin, Z.; Guo, W. Z.; Long, Y. Z. Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor. Nanoscale Res. Lett. 2018, 13, 86.
  •  
  • 19. Emiru, T. F.; Ayele, D. W. Controlled Synthesis, Characterization and Reduction of Graphene Oxide: A Convenient Method for Large Scale Production. Egypt. J. Basic Appl. Sci. 2017, 4, 74-79.
  •  
  • 20. Chen, P.-R.; Hoang, M.-S.; Lai, K.-Y.; Chen, H.-S. Bifunctional Metal Oleate as an Alternative Method to Remove Surface Oxide and Passivate Surface Defects of Aminophosphine-based InP Quantum Dots. Nanomaterials 2022, 12, 573.
  •  
  • 21. Baruah, J. M.; Kalita, S.; Narayan, J. Green Chemistry Synthesis of Biocompatible ZnS Quantum Dots (QDs): Their Application as Potential Thin Films and Antibacterial Agent. Int. Nano Lett. 2019, 9, 149-159.
  •  
  • 22. Turczyn, R.; Krukiewicz, K.; Katunin, A.; Sroka, J.; Sul, P. Fabrication and Application of Electrically Conducting Composites for Electromagnetic Interference Shielding of Remotely Piloted Aircraft Systems. Compos. Struct. 2020, 232, 111498.
  •  
  • 23. Omastová, M.; Trchová, M.; Kovářová, J.; Stejskal, J. Synthesis and Structural Study of Polypyrroles Prepared in the Presence of Surfactants. Synth. Met. 2003, 138, 447-455.
  •  
  • 24. Choi, J. S.; Han, S. J.; Yim, J.-H. Effects of Fabrication Process of Conductive TPU Composites on Dual-function Gas Sensor and Energy Devices. ACS Appl. Electron. Mater. 2024, 6, 658-668.
  •  
  • 25. Cho, H.-J.; Noh, Y.-J.; Jin, E.-Y.; Yim, J.-H. Study on the Hybrid Dual-functioning Application of Urethane Foam Modified with Graphene Oxide and Polypyrrole for an Electrode Scaffold as Well as Chemical Sensor. Polym. Korea 2023, 47, 453-462.
  •  
  • 26. Kim, Y. J.; Kang, H. J.; Moerk, C. T.; Lee, B.-T.; Choi, J. S.; Yim, J.-H. Flexible, Biocompatible, and Electroconductive Polyurethane Foam Composites Coated with Graphene Oxide for Ammonia Detection. Sens. Actuators B. Chem. 2021, 344, 130269.
  •  
  • 27. Fernandez, F. D. M.; Khadka, R.; Yim, J.-H. A Comparative Study Between Vapor Phase Polymerized PPy and PEDOT–Thermoplastic Polyurethane Composites for Ammonia Sensing. Polymer 2021, 217, 123463.
  •  
  • 28. Sharma, R. K.; Singh, A.; Shon, H. K.; Balasubramanian, R. Effect of Polymer Thickness on Ion Diffusion in Polypyrrole-based Electrodes. J. Power Sources 2017, 342, 394-404.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2026; 50(1): 167-176

    Published online Jan 25, 2026

  • 10.7317/pk.2026.50.1.167
  • Received on Sep 23, 2025
  • Revised on Nov 14, 2025
  • Accepted on Dec 10, 2025

Correspondence to

  • Jong Seob Choi , and Jin-Heong Yim
  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheonandaero, Cheonan, Chungnam, 31080, Korea

  • E-mail: choijongseob@kongju.ac.kr, jhyim@kongju.ac.kr