폴리에테르이미드 용융중합 공정개선을 위한 신규 디아민 합성 및 중합

 서완기*#・박노균*#・정유리*****・김호섭**・김상균**・손영교**・손상민**・김윤호*****◎・원종찬******◎

 *한국화학연구원 고기능고분자연구센터, ** 코오롱인더스트리, ***과학기술연합대학원대학교 KRICT스쿨

 (2020년 1월 16일 접수, 2020년 1월 28일 수정, 2020년 1월 28일 채택)

Synthesis of New Diamine and Polymerization of Polyetherimide for Improving Melt Process

Wan Gi Seo*[#], No Kyun Park^{*,#}, Yuri Jeong^{*,***}, Ho Sub Kim^{**}, Sang Kyun Kim^{**}, Young Kyo Son^{**}, Sang Min Song^{**}, Yun Ho Kim^{*,***†©}, and Jong Chan Won^{*,***†©}

*Advanced Functional Polymers Research Center, Korea Reserch Institute of Chemical Technology Gajeongro 141, Yuseong, Daejeon 34114, Korea **Kolon Industries, Inc., Magokdong-ro 110, Gangseo-gu, Seoul 07793, Korea ***KRICT School, University of Science and Technology (UST), Gajeongro 217, Yuseong, Daejeon 34113, Korea (Received January 16, 2020; Revised January 28, 2020; Accepted January 28, 2020)

초록: 폴리에테르이미드(PEI)의 용용중합은 단량체의 양을 정밀하게 조절하기 어려워 동일한 품질을 양산하기 힘들 다는 큰 한계점이 있다. 특히, 기존 디아민 단량체인 *m*-PDA는 낮은 용점(64 °C)으로 인해 압출기의 투입구에서 용 용되어 혼합비의 불균형을 초래하였다. 본 연구에서는 문제를 개선할 수 있는 신규 디아민 단량체 DABI를 소개한 다. DABI는 98%의 높은 수득률로 제조되었으며 부가 반응이 없는 A-B-A 다이머 구조이다. 또한 DABI는 152 °C 의 높은 융점을 가지고 있는 것으로 나타났다. 최종적으로 DABI를 이용한 용용중합에서 높은 분자량을 가지는 PEI 를 얻을 수 있었으며, 이러한 결과는 합성한 신규단량체 DABI가 혼합비 불균형 문제를 해소하고 공정을 개선하였 음을 보여준다.

Abstract: Melt process of polyetherimide (PEI) has a difficulty to precisely control mixing ratio of monomers, which results in failure of production on an industrial scale. Especially, a typical diamine monomer obstructs the feeder of the hot extruder due to its low melting point (mp) of 64 °C. In this work, we suggest that a novel diamine monomer, DABI, can be substituted for the conventional monomer. The molecular structure of DABI was designed with the A-B-A structure with amide linkage, where A was *m*-PDA and B was BPADA, and was identified by structural analysis (¹H NMR and FTIR). DABI showed a high yield of 98% in synthesis process and a high mp of 152 °C in thermal analysis (DSC). Finally, we obtain high molecular weight of PEI via melt process.

Keywords: polyimide, polyetherimide, extruder, melt polymerization.

서 론

슈퍼 엔지니어링 플라스틱은 가벼우면서도 높은 내열성 및 내화학성과 우수한 기계적 특성을 가지므로 금속을 대체할 수 있는 물질로서 산업계 전반에서 각광받고 있다. 이중 폴 리이미드(polyimide, PI)는 내열성이 뛰어나고 자체 난연성을

[#]These authors contributed equally to this work.
[†]To whom correspondence should be addressed.
yunho@krict.re.kr, ORCID®0000-0004-6772-8282
jcwon@krict.re.kr, ORCID®0000-0004-6507-0077
©2020 The Polymer Society of Korea. All rights reserved.

가지므로 고온에서도 안정적으로 장기간 사용이 가능하다. 또 한 전기적 특성과 기계적 특성이 우수하여 항공, 전기/전자, 자동차 및 정밀기기 등 다양한 분야에서 이용되고 있다.^{1,2} 그 러나 전방향족 폴리이미드는 분자 사슬 간의 강한 결합력으 로 인해 용매에 불용이며, 고온에서도 유리전이온도가 존재 하지 않아 성형가공이 어렵다는 한계를 가지고 있다.^{3,4} 산업 적으로 낮은 성형 가공성은 큰 제약이므로, 이를 해결하기 위 해 국내외 연구진들은 폴리이미드의 우수한 장점을 저해하지 않으면서도 동시에 성형가공성을 갖는 수지를 개발해왔다.⁴⁶ 이러한 수지에는 폴리에테르이미드(polyetherimide, PEI),^{7,8} 폴 리아마이드이미드(polyamideimide),^{9,10} 폴리에스테르이미드 (polyesterimide, PEsI) 등이 있다. 대표적인 상업화 수지 중 하나는 Sabic사의 에테르 연결기 및 메틸기를 함유한 Ultem PEI이며, 이는 DMF, DMAc, NMP 및 CHCl₃와 같은 용매에 가용성이고 217 ℃에서 유리전이온도를 갖는다.

일반적인 PEI의 중합법에는 용액중합과^{11,12} 용융중합이^{13,14} 있다. 용액중합은 유기용매에 단량체를 용해시키고 중합을 진 행하는 방법이며, 용융중합은 압출기 내부에서 단량체를 고 온 용융시켜 중합을 진행하는 방법이다. 두 중합법은 각각 장 단점을 가지고 있다. 용액중합은 단량체의 양을 매우 정밀하 게 조절하여 균일한 품질을 만들 수 있는 장점이 있지만, 중 합 중 공기에 노출되면 고분자의 중합도와 물성이 저하되는 문제점이 있다. 또한 해로운 유기용매를 필요로 하고 이를 제 거하기 위한 과정이 추가로 필요하다는 점에서 많은 시간과 비용이 요구되는 방법이다. 반면, 용융중합은 단일과정으로 빠르게 중합할 수 있다는 점에서 시간과 자본이 절약될 수 있고 용액중합보다 높은 분자량으로 중합이 가능하다는 장점 이 있다. 하지만, 단량체의 양을 정밀하게 조절하기 어려워 중합체의 분자량이 일정하지 않을 수 있다는 문제는¹⁵ 해결 해야 할 큰 과제이다.

용융중합을 수행하기 위해서는 압출기 내부에서 적절한 온 도와 시간을 통해 단량체를 빠르게 반응시키는 것이 중요하 다. 그러나 Ultem PEI 단량체 중 하나인 메타-페닐렌 디아민 (*m*-PDA)은 낮은 융점(64 ℃)으로 인해 고온의 압출기에 투입 될 때 큰 어려움을 초래한다. 300 ℃ 이상의 압출기 내부온 도로 인해 *m*-PDA가 투입구(feeder) 근처에서 용융되고 들러 붙어 투입이 방해되거나 혹은 기화되어 가스가 발생되는 것 이다. 이러한 문제를 해결하기 위해서 *m*-PDA를 대체할 수 있는 융점이 높은 새로운 단량체의 필요성이 대두된다.

본 연구에서는 PEI 용융중합의 공정을 개선하기 위해 융점 이 높은 A-B-A 다이머(dimer) 타입의 신규단량체를 합성하 였다. 신규단량체는 같은 화학구조의 표준시료(standard)와의 비교분석을 통해 구조를 확인하였다. 화학구조의 분석은 'H NMR과 FTIR을 통해 이뤄졌으며, 열분석은 DSC를 통해 이 뤄졌다. 최종적으로 신규단량체를 도입하여 용융중합에 의해 제조된 시편의 분자량은 GPC로 분석하고 기존의 PEI와 비 교함으로써 개선된 공정을 정량적으로 확인하였다.

실 험

재료. 이무수물 단량체로는 Sunlight사의 4,4'-(4,4'isopropylidenediphenoxy)bis(phthalic anhydride)(BPADA), 디 아민 단량체는 Sigma Aldrich사의 *m*-phenylenediamine(*m*-PDA)을 별도의 정제 없이 사용하였다. 표준시료 합성을 위 해 Sigma Aldrich사의 3-nitroaniline과 palladium on activated carbon(Pd/C, 5 wt% Pd)을 별도의 정제없이 사용하였다. 단 량체 합성 및 정제를 위한 용매로써 Sigma Aldrich사의 dichloromethane(MC, 99.8%), methanol(99.8%), *N*,*N*-dimethylacetamide(DMAc, 99.8%), *N*,*N*-dimethylformamide(DMF, 99.5%), toluene(99.8%), 1,4-dioxane(99%), *n*-hexane(95%), ethyl acetate(99.5%) 및 tetrahydrofuran(THF, 99.9%)를 사용 하였다.

반응온도와 시간에 따른 BPADA/*m*-PDA 조성 PEI 중합 도 비교. 알루미늄 용기에 BPADA와 *m*-PDA를 1:1 몰 비율 로 혼합하여 준비한 후 250, 300, 350 ℃로 설정된 컨벡션 오 븐에 넣어 5, 10, 15, 20, 30분의 시간의 경과에 따라 오븐에 서 꺼내어 중합을 종료시켰다(Scheme 1).

신규 디아민 단량체 DABI 합성. 250 mL 2-neck round bottom flask에 *m*-PDA 2.379 g(0.022 mol)을 넣고 dichloromethane 20 mL를 첨가하여 질소 분위기로 실온에서 교반하면 서 완전히 녹였다. 그리고 다른 250 mL 2-neck round bottom flask에 BPADA 5.205 g(0.01 mol)을 넣고 dichloromethane 30 mL를 첨가하여 질소 분위기로 실온에서 교반하면서 완전 히 녹였다. BPADA의 양 말단에 *m*-PDA를 결합하기 위하여 *m*-PDA가 녹아있는 플라스크에 용해된 BPADA를 천천히 주 입했다. 반응 진행에 따라 백색의 결정체가 석출되었다. 석출 된 고체를 필터로 거르고 순수한 dichloromethane을 세척액 으로 사용하여 잔류하는 BPADA와 *m*-PDA를 제거하고 진공 오븐에서 건조하였다. 수득률 98% 이상으로 합성된 단량체 는 DABI로 명명하였다(Scheme 2). 이는 ¹H NMR 스펙트럼 측정에 의해 구조를 분석하였다.

¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ 10(2H, d), 7.9(2H, d), 7.5(1H, d), 7.3(4H, d), 7.2(1H, d), 7.0(6H, d), 6.9(2H, d), 6.8(2H, d), 6.7(2H, d), 6.3(2H, d), 1.7(6H, s)

신규단량체 DABI 이미드화(I-DABI). 합성된 DABI는 Dean-Stark trap을 사용하여 이미드화시켰다. 환류냉각기와

Scheme 1. Synthesis of PEI (BPADA/m-PDA) via melt polymerization without stirring.

Scheme 2. Synthesis of new monomer (DABI).

Dean-Stark trap을 장치한 100 mL one-neck round bottom flask에 DABI 7.37 g(0.01 mol)을 넣고 dimethylformamide (DMF) 25 mL를 첨가하여 질소 분위기로 실온에서 교반하면 서 완전히 녹였다. 그리고 toluene 25 mL를 첨가하고 120 ℃ 로 가열하여 탈수반응을 통해 이미드화시켰다. 이후 실온으 로 식혀 methanol에 침전시켜 생성물을 얻었다. 생성물은 1,4-dioxane에 녹여 TLC *R*값 0.42을 확인 후 용리제 *n*-hexane과 ethyl acetate 50 v/v%를 이용하여 450 mesh 실리카겔 칼럼 크로마토그래피(silica gel column chromatography)로 분리 건 조하였으며 75% 수득률로 imidized DABI(I-DABI)의 흰색 고체를 얻었다. 이는 'H NMR 스페트럼 측정에 의해 구조를 분석하였다(Figure 7(b)).

¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.94(2H, d), 7.41~ 7.34(8H, m), 7.15~7.10(6H, m), 6.61~6.64(6H, m), 5.34(4H, s), 1.72(6H, s)

표준시료 전구체 DN 합성 및 DN 이미드화(I-DN). 250 mL 2-neck round bottom flask에 3-nitroaniline 3.03864 g(0.022 mol)을 넣고 dichloromethane 40 mL를 첨가하여 질소 분위기 로 실온에서 교반하면서 완전히 녹였다. 그리고 다른 250 mL 2-neck round bottom flask에 BPADA 5.205 g(0.01 mol)을 넣고 dichloromethane 20 mL를 첨가하여 질소 분위기로 실 온에서 교반하면서 완전히 녹였다. BPADA의 양 말단에 3nitroaniline를 결합하기 위하여 3-nitroaniline이 녹아있는 플 라스크에 용해된 BPADA를 천천히 주입하였다. 반응이 진행 됨에 따라 생성된 단량체가 석출되었다. 석출된 단량체를 필 터로 거르고 순수한 dichloromethane을 세척액으로 사용하여 잔류하는 BPADA와 3-nitroaniline을 제거하였다. 진공오븐에 서 건조하여 수득률 96% 이상의 흰색 고체를 얻었으며 합성 된 단량체를 DABI-Nitro(DN)으로 명명하였다(Scheme 3). 이 는 'H NMR 스펙트럼 측정에 의해 구조를 분석하였다(Figure 4(a)).

 $^1\mathrm{H}$ NMR (500 MHz, DMSO-d_6) δ_H 13.0(2H, m) 10.8(2H, d), 8.7(2H, d), 7.9(5H, d), 7.6(3H, d), 7.4(5H, d), 7.3(1H, d), 7.0(6H, d), 1.7(6H, s)

위에서 합성된 전구체 DN은 Dean-Stark trap을 사용하여 이미드화되었다. 환류냉각기와 Dean-Stark trap을 연결한 250 mL 2-neck round bottom flask에 DN 7.9675 g(0.01 mol) 를 넣고 dimethylacetamide(DMAc) 50 mL를 첨가하여 질소

Scheme 3. Synthesis of DN by model reaction.

분위기로 실온에서 교반하면서 완전히 녹였다. 그리고 toluene 50 mL를 첨가한 후 120 ℃로 가열하였다. 탈수반응을 통해 이미드화시킨 후 실온으로 식혀 methanol에 침전시켜 생성물 을 얻었다. 생성물은 필터를 통해 거르고 진공 오븐에서 건 조시켰으며 98% 이상의 수득률로 흰색 고체를 얻었다. 수득 한 단량체를 imidized DN(I-DN)으로 명명하였다. 이는 'H NMR 스펙트럼 측정에 의해 구조를 분석하였다(Figure 4(b)).

¹H NMR (500 MHz, DMSO-d₆) $\delta_{\rm H}$ 8.4(2H, d), 8.3(2H, d), 8.0(2H, d), 7.9(2H, d), 7.8(2H, d), 7.4(8H, d), 7.2(4H, d), 1.7(6H, s)

표준시료 I-DNR 제조. 이미드화된 표준시료 전구체(I-DN) 의 NO₂기를 NH₂기로 환원하기 위해서 hydrogenator을 이용 하였다. I-DN 1.14 g(1.5 mmol)을 수소반응용 500 mL 용기에 넣고 tetrahydrofuran(THF) 50 mL에 녹인 후 methanol 25 mL 를 첨가하고 촉매로 Pd/C를 소량 넣어주었다. H₂ 가스로 채 워 2 bar의 압력을 주어 반응을 진행하였다. 반응의 진행됨 에 따라서 H₂ 가스의 압력이 감소하며 반응량을 계산하여 H₂ 가스를 채워주었다. 압력이 더이상 감소하지 않을 때 반응을 종료시켰다. 반응종료 후 Pd/C를 필터 제거 후 회전 농축기 를 이용하여 용매를 제거하고 진공 오븐에서 건조하여 99% 의 수득률로 노란색 고체를 얻었다. 수득된 단량체를 imidized DABI-Nitro Reduction(I-DNR)로 명명하였다(Figure 1). 이는 ¹H NMR 스펙트럼 측정에 의해 구조를 분석하였다(Figure 4(c)).

 $^1\mathrm{H}$ NMR (500 MHz, DMSO-d_6) δ_H 8.0(2H, d), 7.4(8H, d), 7.1(6H, d), 6.6(2H, d), 6.5(2H, d), 6.4(2H, d), 5.3(4H, d), 1.7(6H, s)

BPADA/DABI 조성 PEI 용융중합. BPADA와 DABI를 1:1 볼 비율로 혼합하여 반응물을 준비하였다. 320 ℃로 설정 된 micro-compounder에 혼합물을 투입하였으며 투입 후 5분 간 블렌딩하였다. 그리고 압·사출을 통해서 펠렛 및 용융중합 된 PEI dog-bone 시편을 얻었다(Scheme 4).

기기 및 분석. 합성된 단량체의 구조분석은 FTIR(Bruker

Figure 1. Structure of I-DNR.

Scheme 4. Melt polymerization reaction using BPADA-DABI by extrusion.

ALPHA-P)과 ¹H NMR(Bruker AVANCE 500 MHz NMR)을 사용하였으며, 분석용매는 dimethylsulfoxide-d₆(DMSO-d₆)를 사용하였다. 열분석은 DSC(Thermo plus EVO II DSC 8230) 를 사용하여 수행되었다. 중합한 PEI의 분자량을 분석하기 위해 GPC(Waters Refractuve Index Detector 2414)를 사용하 였으며 분석용매로는 DMAc가 사용되었다. PEI의 용융중합 을 위한 압출기는 Explore사의 Microcompounder MC15를 사 용하였으며 분석을 위한 시편제조를 위해 Explore사의 Micro injection moulder IM12를 사용하였다.

결과 및 토론

반응온도와 시간에 따른 BPADA/m-PDA 조성 PEI 중합 도 비교. BPADA와 m-PDA 조성의 PEI 용융중합에 적합한 온도와 시간을 알아보기 위하여 1:1 볼 비율로 단순 혼합한 고체상을 컨벡션 오븐에서 반응시켜 보았다. Figure 2는 세 가지 다른 온도(250, 300, 350 ℃)의 오븐에서 시간 경과(5분 -30분)에 따른 중합체의 외형이다. 온도 상승과 시간 경과로 인해 열화된 중합체는 어두운색으로 나타났다.

반응온도와 시간에 따른 PEI의 중합도는 GPC를 이용하여 상대 분자량을 분석함으로써 비교 가능하였다. Table 1은 온 도 상승과 시간 경과에 따라 제조되는 중합체의 분자량이 대 체로 증가하는 경향을 보여준다. Figure 3의 그래프는 경향을 도식화한 결과이다. 300 ℃ 이상에서는 5분이라는 짧은 시간 반응에서도 큰 분자량의 중합체를 제조할 수 있었으며, 이는 용융온도 이상에서 PEI의 중합속도가 상당히 빠른 속도로 진 행됨을 알 수 있다. 뿐만 아니라, 반응온도 조절을 통해 중합 체의 상대 분자량이 조절될 수 있음을 보여준다. 우리는 반 응온도와 시간에 따라 도출된 상대 분자량 결과를 이용하여 최적의 용융중합온도와 시간을 320 ℃와 5분으로 설정하였다.

표준시료를 이용한 신규 디아민 단량체 DABI 구조 분석. 신규단량체 DABI는 BPADA의 양 말단에 *m*-PDA가 결합된 A-B-A 구조이고 amide linkage를 가진다. 우리는 98%의 높은

Figure 2. Appearance of PEI samples prepared under different reaction temperatures and times in convection oven.

Sample		М	М	DDI
Temp. (°C)	Time (min)	$(g \text{ mol}^{-1})$	$(g \text{ mol}^{-1})$	$(M_{\rm w} M_{\rm n}^{-1})$
250	5	5800	10300	1.78
	10	6500	10600	1.63
	15	7900	15000	1.88
	20	8400	17000	2.02
	30	7400	16000	2.17
300	5	16400	34100	2.07
	10	11700	26000	2.22
	15	15100	34300	2.26
	20	14300	34900	2.43
	30	16100	36500	2.27
350	5	15600	32500	2.07
	10	17200	36900	2.15
	15	18000	39700	2.20
	20	18800	41300	2.19
	30	20000	45400	2.26

Figure 3. Trend of weight average molecular weight with different reaction temperatures and times.

수득률로 합성된 DABI가 정확히 A-B-A 다이머 타입으로 중 합되었는지, 즉 부가 반응의 진행 여부를 알아보기 위하여 표 준시료인 I-DNR을 이용하여 비교하였다. 표준시료 I-DNR은 1) 전구체 합성, 2) 전구체의 이미드화, 3) 이미드화된 전구체 의 환원반응 총 3단계를 통해 정확한 A-B-A 구조로 합성되 었다. 모델반응을¹⁶ 이용하여 전구체 합성에는 *m*-PDA와 구 조가 유사하지만, meta 위치의 한 쪽이 NO₂로 치환된 3nitroaniline이 출발 물질로 사용되었다. 따라서 양쪽에 NH₂기 가 있는 *m*-PDA와 달리 BPADA와의 부가 반응이 억제될 수

 Table 1. Molecular Weight Analysis of PEI Samples Prepared under Different Reaction Temperatures and Times

Figure 4. ¹H NMR spectra of (a) DN; (b) I-DN; (c) I-DNR.

있다. 표준시료 I-DNR과 관련한 ¹H NMR 스펙트럼은 Figure 4에 나타내었다: (a) 전구체(DN), (b) 이미드화된 전구체(I-DN), (c) 표준시료(I-DNR). DN의 ¹H NMR 스펙트럼을 분석 한 결과 13.0 ppm에서 carboxylic acid(-COOH)피크가 확인 되었고, 10.8 ppm에서 carboxamide group(-CONH-)피크가 확 인되었다. Benzene ring의 피크는 7.0-9.0 ppm에서 multiplet 으로 나타났다. 또한 1.7 ppm에서 methyl group(-CH₃) 피크를 확인할 수 있었다(Figure 4(a)). 그리고 I-DN의 ¹H NMR 스펙트럼을 분석한 결과 이미드화로 인해 13.0 ppm에서의 -COOH와 10.8 ppm에서의 -CONH 피크가 사라지는 것을 확 인할 수 있다. 이는 전구체가 100% 이미드화 진행되었음을 의미한다(Figure 4(b)). 표준시료인 I-DNR은 양 말단이 NO₂ 에서 NH₂로 환원되면서 5.3 ppm에서 -NH₂ 피크가 새롭게 형 성되는 것을 확인할 수 있었다(Figure 4(c)).

Figure 5는 위 세 가지 구조 분석을 위해 실시한 FTIR 결 과이다. 그 결과 표준시료인 I-DNR에서는 이미드의 전형적 인 피크인 symmetric C=O 피크(1780 cm⁻¹)와 asymmetric C=O 피크(1716 cm⁻¹)가 확인되었으며, 환원의 결과로 생성된 -NH₂ 피크(3400 cm⁻¹)를 확인할 수 있었다.

Figure 5. FTIR spectra of DN (black), I-DN (red), and I-DNR (blue).

Figure 6. FTIR spectra of BPADA (black) and DABI (red).

다음은 FTIR을 통해 amide linkage를 가진 DABI를 이무 수물 BPADA와 비교 분석한 결과이다(Figure 6). 그 결과 신 규단량체 DABI에서는 dianhydride C=O 피크(1850 cm⁻¹, 1780 cm⁻¹)가 사라지고 amide C=O 피크(1720 cm⁻¹), amide N-H 피크(1550 cm⁻¹)가 생성되었다.

우리는 DABI의 A-B-A 구조를 보다 명확히 규명하기 위 하여 탈수반응을 통해 이미드화된 DABI(I-DABI)와 표준시 료인 I-DNR의 ¹H NMR 스펙트럼을 비교 분석하였다(Figure 7). I-DABI는 5.34 ppm에서 -NH₂ 피크가 확인되었고, 6.48-7.95 ppm에서 benzene ring의 multiplet 피크가 확인되었으 며, 이러한 결과는 표준시료 I-DNR과 정확히 일치한다. 또 한 -NH₂ 피크와 benzene ring 피크의 적분비를 계산한 결과, I-DABI는 BPADA와 *m*-PDA가 1:2 몰 비율로 중합된 A-B-A 구조를 가지는 것을 명확하게 규명하였다.

신규단량체 DABI의 열분석. 기존의 m-PDA의 낮은 융점

(a) $-NH_{2}$ DMSO TMS $\frac{1}{9}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{9}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{9}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{9}$ $\frac{1}{8}$ $\frac{1}{8$

Figure 7. ¹H NMR spectra of (a) I-DNR; (b) I-DABI.

Figure 8. Melting behavior of DABI during heating scan by DSC.

(64 ℃)은 고온의 압출기에 투입될 때 문제가 되었다. 투입구 에서 용융되고 달라붙어 투입을 방해하고 최종적으로 단량체 의 혼합비율이 달라져 중합도가 낮아지는 것이다. 또한 압출 기 내부에서 쉽게 열화되는 문제로 인해 연속적인 중합이 불 가능하였다.

위에서 성공적으로 합성된 A-B-A 다이머 타입의 신규단량 체 DABI는 Figure 8의 DSC 열분석을 통해 152 ℃의 높은 융점을 가지는 것으로 확인되었다. 두 번째 사이클에서는 첫 번째 승온 시에 이미드화가 진행되었으므로 용융점이 나타나 지 않았다. 높은 융점을 가진 신규단량체 DABI는 PEI 용융 중합 시 기존에 *m*-PDA가 가진 문제를 해소하고 공정효율성 을 높일 수 있을 것이라 예상한다.

신규단량체 DABI를 이용한 용융중합. 본 연구에서 합성 한 신규단량체 DABI를 BPADA와 1:1 몰 비율로 혼합하여

 Table 2. Molecular Weight Analysis of PEI Samples Prepared

 by Extrusion Process

	$M_{\rm n}$ (g mol ⁻¹)	$M_{\rm w}$ (g mol ⁻¹)	$\begin{array}{c} \text{PDI} \\ (M_{\text{w}} \ M_{\text{n}}^{-1}) \end{array}$
Ultem pellet	27700	45200	1.63
BPADA/m-PDA	19300	26400	1.37
BPADA/DABI	55200	100000	1.82

용융중합을 실시하였다. 용융중합 시 온도와 시간은 상기의 반응온도와 시간에 따른 BPADA/m-PDA 조성 PEI 중합도 비교를 통해 도출된 320 °C와 5분으로 설정하였다. 그리고 신 규단량체 DABI가 용융중합에 미치는 효과를 확인하기 위하 여 BPADA/m-PDA를 이용한 용융중합을 동등한 온도와 시 간 조건에서 실행하였다. 1) Ultem 1000 pellet, 2) BPADA/ m-PDA 조성의 PEI, 3) BPADA/DABI 조성의 PEI의 각 시 편에 대해 GPC를 통한 상대 분자량을 분석하였다(Table 2). 상용화된 Ultem 1000 pellet의 경우 수평균 분자량(Mn)과 중 량평균 분자량(Mw)은 27700과 45200 g mol⁻¹이었으며, 다분 산지수(PDI)는 1.63으로 나타났다. BPADA/m-PDA 조성을 이용한 PEI의 경우 Ma과 May은 19300과 26400 g mol⁻¹이었 으며, 다분산지수(PDI)는 1.37으로 나타났다. Ultem 1000 pellet에 비해 BPADA/m-PDA에서 낮은 분자량으로 중합된 원인은 m-PDA의 낮은 융점으로 인한 혼합비의 불균형 및 열 화의 문제라고 추측할 수 있다. 이에 반해 신규단량체 DABI 를 사용한 용융중합의 경우 월등히 높은 분자량(M_=55200 g mol⁻¹, M_w=100000 g mol⁻¹)을 얻을 수 있었으며 PDI는 1.82 로 나타났다. 이러한 결과는 높은 융점(152 ℃)의 단량체를 공정에 도입함으로써 혼합비의 불균형과 열화 문제를 해결하 고 높은 분자량의 PEI를 중합할 수 있음을 증명한다.

결 론

본 연구에서는 기존의 *m*-PDA를 대체할 수 있는 신규단량 체 DABI를 높은 수득률(98% 이상)로 합성하였고, 표준시료 를 이용해 화학구조 분석을 수행하였다. ¹H NMR과 FTIR 스 펙트럼 분석을 통해 표준시료와 비교한 결과, DABI는 BPADA와 *m*-PDA가 1:2 몰 비율로 반응한 A-B-A 구조임이 증명되었다. 또한 DSC를 이용한 열분석 결과 DABI는 152 ℃ 의 높은 용융점을 가졌다. 최종적으로 높은 융점을 가지는 DABI를 용융중합에 적용하였을 때 정량적인 공정개선이 이 루어졌다. GPC를 통해 용융중합된 PEI 시편의 상대 분자량 을 측정한 결과 높은 분자량(*M*_n=55200 g mol⁻¹, *M*_w=100000 g mol⁻¹)으로 나타났으며, 이는 기존의 BPADA/*m*-PDA 조성의 PEI와 Ultem 1000 pellet의 상대 분자량과 비교하였을 때 월 등히 높은 수치이다. 이러한 결과는 높은 융점(152 ℃)의 단 량체를 공정에 도입함으로써 혼합비의 불균형과 열화 문제가 해결되고 높은 분자량의 PEI를 중합할 수 있음을 증명한다. 향후 일정한 분자량으로 연속 제조하는 연구들이 좀 더 보완 된다면 실제 산업에서 적용될 가치가 있을 것으로 보인다.

감사의 글: 본 연구는 코오롱인더스트리의 기업수탁과제 (IIT17-08) 및 한국화학연구원 주요사업과제(SI1921-20) 지원 으로 수행되었으므로 이에 사의를 표합니다.

참고문 헌

- M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, *Polyimides-Thermally Stable Polymers*, Consultants Bureau, New York, 1988.
- 2. W.-L. Qu and T.-M. Ko, J. Appl. Polym. Sci., 82, 1642 (2001).
- 3. J. De Abajo and J. G. de la Campa, *Processable Aromatic Polyimides*, Springer, Berlin, 1999.
- E. Hamciuc, C. Hamciuc and M. Cazacu, *Poly(etherimide)s for High Performance Materials*, Nova Science, New York, 2008.
- 5. S. Zaragoza, A. Alvarez, B. Alvarez, J. Lopez-Beceiro, S. Naya,

P. Forcen, and R. Artiaga, J. Appl. Polym. Sci., 132, 42329 (2015).

- D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, *Polyimides*, Springer Netherlands, Beriln, 1990.
- 7. R. O. Johnson and E. O. Teutsch, Polym. Compos., 4, 162 (1983).
- R. O. Johnson and H. S. Burlhis, J. Polym. Sci.: Polym. Symp., 70, 129 (1983).
- S. Terney, J. Keating, J. Zielinski, J. Hakala, and H. Sheffer, J. Polym. Sci., Part A: Polym. Chem., 8, 683 (1970).
- S.-H. Hsiao, C.-P. Yang, C.-W. Chen, and G.-S. Liou, J. Polym. Res., 12, 289 (2005).
- 11. D. R. Heath and J. G. Wirth, US Patent 3,838,097 (1974).
- 12. F. J. Williams and H. M. Relles, US Patent 4,297,474 (1981).
- T. Takehoshi and J. E. Kochanowski, US Patent 3,803,085 (1972).
- 14. T. Takekoshi, US Patent 4,281,100 (1981).
- N. Silvi, M. H. Giammattei, P. E. Howson, and F. F. Khouri, US Patent 7,053,168 B2 (2006).
- A. J. Mckerrow, M. A. Fox, J. Leu, and P. S. Ho, J. Polym. Sci., Part A: Polym. Chem., 35, 319 (1997).