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Abstract: An ionic polyacetylene derivative was synthesized via in-situ quaternization polymerization of 2-ethynylpyr-
idine using 1-(bromoacetyl)pyrene. The monomeric N-(2-oxo-2-(pyrene)ethyl)-2-ethynylpyridinium bromide firstly
formed from the reaction of 2-ethynylpyridine and 1-(bromoacetyl)pyrene was spontaneously polymerized without any
additional catalyst systems to give the ionic polyacetylene in high yield (85%). The analysis results on the polymer struc-
ture using instrumental methods such as NMR, IR, and UV-visible spectroscopies showed that the polymer had the con-
jugated backbone system with the designed pyrene moieties. This polymer dissolves well in organic solvents such as
DMSO, DMF, DMAc, etc. The UV-visible spectrum of polymers showed characteristic absorption peaks in visible light
regions above 400 nm that were not observed in the spectrum of 2-ethylpyridine and 1-(bromoacetyl) pyrene, indicating
the formation of conjugated structural polymers. The cyclic voltammogram of the polymer showed an oxidation peak at
1.0V and a reduction peak at -1.3 V, demonstrating stable electrochemical behavior during continuous scanning up to 50
cycles. Additionally, it was observed that the current of oxidation and reduction processes increased stably even when
the scan rate was increased up to 150 mV/s.
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Scheme 1. Synthesis of an ionic polyacetylene with pyrene moieties.
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Figure 1. FTIR spectrum of poly(2-ethynylpyridinium bromide)
having the pyrene moieties.
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Figure 2. UV-visible spectrum of poly(2-ethynylpyridinium bromide)
having the pyrene moieties.
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having the pyrene moieties.
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