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Abstract: The influence of polymer content and curing conditions of PEGDA-based quasi-solid electrolytes on interfacial
stability and cycling performance in lithium metal batteries were investigated. To assess the degree of polymerization,
Fourier-transform infrared (FTIR) spectroscopy measurement was conducted, focusing on the consumption of acrylate
functional groups. Electrochemical impedance spectroscopy, linear sweep voltammetry, and critical current density tests
were used to evaluate ionic conductivity, electrochemical stability, and lithium plating/stripping behavior. In addition,
high-loading NCM811 (LiNiy3Coy;Mn,,;0,)/Li metal cells were assembled to examine cycling performance under prac-
tical conditions. Among various compositions, the electrolyte containing 4 wt% PEGDA cured at 50-60 C exhibited the
highest capacity retention and electrochemical stability. These results highlight that the optimized processing conditions

significantly enhance the performance and reliability of quasi-solid-state lithium metal batteries.

Keywords: quasi-solid state battery, gel-polymer electrolyte, Fourier-transform infrared.
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Figure 1. Experimental procedure of gel-polymer electrolyte.
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Figure 2. Images of PEGDA-based quasi-solid electrolyte solutions:
(a) before; (b) after curing.
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Figure 3. (a) Full ranged; (b) magnified FTIR spectra of the quasi-
solid electrolytes with varying the curing conditions.
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Figure 4. (a) Nyquist plot; (b) linear sweep voltammetry curves of the quasi-solid electrolytes with varying the curing conditions, voltage
and current profiles in time domain of the quasi-solid electrolytes of (c) PEGDA 4 wt%, 50 C, 1 h; (d) PEGDA 4 wt%, 60 C, 1 h; (e)

PEGDA 8 wt%, 50 C, 1 h; (f) PEGDA 8 wt%, 60 C, 1h.
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