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Abstract: In this study, cellulose nanofiber (CNF) modified with (3-aminopropyl)triethoxysilane (APTES) was used as
an additive to improve the physical properties of rigid polyurethane foam. The effects of surface modification with different
APTES concentrations on CNF and the properties of polyurethane (PU) composite foams with APTES-CNF were inves-
tigated by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), universal testing machine (UTM),
and thermal conductivity analysis. The results showed that when APTES and CNF were synthesized at a 4:1 ratio, the
particles of APTES-CNF became smaller, and the compatibility with PU improved, leading to enhanced mechanical prop-
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erties and thermal insulation performance of the PU composite foam.
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Figure 1. CNF surface modification with APTES.
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Figure 2. FTIR spectra of APTES-CNF structure with different
concentrations of silane.
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Figure 3. TGA profile of APTES-CNF structure with different con-
centrations of silane.

Slar o] & <13l 150200 CollA] Eafl=)= Aghe] ofo] Z71s}
o] weight% 7rAado] S7hsich a8y EaE A ko] Si-C
EE SiO, chars 3451 Agte] w7 T7HE 550 C
oA ] ko] char g&Fo] S71aHAl €t Si-C, SiO, chare
CNF EHE 74 cellulose®] SIS =45HA YIS
Z7A 1

Figure 4= SEME- ©]-83F APTES-CNF<] morphology©]
t}. <=5 CNF9F 22] APTESe] 2l 712E CNFe= YA
oA oL A FAI7} Sold e HojE) o= 84k ONF
7 7zE o sk APt 8ol EeS BolETt. Figure
5914 Hi= ule} 7ro] APTES7} CNFe} AdslHA CNF &
e F-2 OH717F 71 #H8719] O-Si-R7|Z X|3=|HA] OH

Figure 4. Morphology of APTES-CNF structure with different con-
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Figure 6. Compatibility of CNF and PU according to silane: (a) neat
PU film; (b) neat CNF/PU film; (c) APTES-CNF/PU film.
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Table 1. Closed Cell Content of APTES-CNF/PU Composite Foam
Neat PUF 0.5:1 1:1 2:1 4:1 8:1
Closed cell content (%) 79.94 81.04 82.68 83.65 84.89 84.04
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