• Effect of Surface-modified Cellulose Nanofibers with Different Silane Concentrations on the Properties of Rigid Polyurethane Foam
  • Juwon Oh and Sang-Bum Kim

  • Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Korea

  • 실란의 농도를 달리하여 표면 개질된 셀룰로오스 나노섬유가 경질 폴리우레탄 폼의 물성에 미치는 영향
  • 오주원· 김상범

  • 경기대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.


References
  • 1. Bhatnagar, A.; Sain, M., Processing of Cellulose Nanofiber-reinforced Composites. J. Reinforced Plastics Compos. 2005, 24, 1259-1268.
  •  
  • 2. Berglund, L.; Noël, M.; Aitomäki, Y.; Öman, T.; Oksman, K., Production Potential of Cellulose Nanofibers From Industrial Residues: Efficiency and Nanofiber Characteristics. Industrial Crops Products 2016, 92, 84-92.
  •  
  • 3. Septevani, A. A.; Evans, D. A.; Martin, D. J.; Song, P.; Annamalai, P. K., Tuning the Microstructure of Polyurethane Foam Using Nanocellulose for Improved Thermal Insulation Properties Through an Efficient Dispersion Methodology. Polymer Composites 2023, 44, 8857-8869.
  •  
  • 4. Hanif, Z.; Jeon, H.; Tran, T. H.; Jegal, J.; Park, S. A.; Kim, S. M.; Oh, D. X., Butanol-mediated Oven-drying of Nanocellulose with Enhanced Dehydration Rate and Aqueous Re-dispersion. J. Polym. Res. 2018, 25, 1-11.
  •  
  • 5. Kim, H.; Park, J.; Minn, K. S.; Youn, J. R.; Song, Y. S., Eco-friendly Nanocellulose Embedded Polymer Composite Foam for Flame Retardancy Improvement. Macromol. Res. 2020, 28, 165-171.
  •  
  • 6. Xu, X.; Liu, F.; Jiang, L.; Zhu, J. Y.; Haagenson, D.; Wiesenborn, D. P., Cellulose Nanocrystals vs. Cellulose Nanofibrils: a Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces 2013, 5, 2999-3009.
  •  
  • 7. Mai, V. D.; Kang, D.; Kim, Y.; Jang, Y.; Min, J.; Han, J. H.; Kim, S. K., Preparation and Environmental Analysis of Biodegradable Polylactic Acid and Modified Cellulose Nanofiber Composites. J. Industrial and Eng. Chem. 2024, 130, 401-411.
  •  
  • 8. Lee, H. M.; Shin, H. N.; Park, S. Y.; Goo, S. I.; Yook, S. Y.; Lee, H. L.; Youn, H. J., Chemical Surface Modification and Addition of Additive for Manufacturing CNF Powder with Good Dispersibility. J. Korea TAPPI 2021, 53, 55-65.
  •  
  • 9. Bello, K. O.; Yan, N., Mechanical and Insulation Performance of Rigid Polyurethane foam Reinforced with Lignin-containing Nanocellulose Fibrils. Polymers 2024, 16, 2119.
  •  
  • 10. Haridevan, H.; Evans, D. A.; Martin, D. J.; Annamalai, P. K., Dispersion Engineering of Cellulose Nanofibres in Polyols: for Controlled Microstructure of High-performance Polyurethane Foam. Mater. Adv. 2024, 5, 1540-1551.
  •  
  • 11. Benhamou, K.; Kaddami, H.; Magnin, A.; Dufresne, A.; Ahmad, A. Bio-based Polyurethane Reinforced with Cellulose Nanofibers: A Comprehensive Investigation on the Effect of Interface. Carbohyd. Polym. 2015, 122, 202-211.
  •  
  • 12. Kalia, S.; Kaith, B. S.; Kaur, I., Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites-a Review. Polym. Eng. Sci. 2009, 49, 1253-1272.
  •  
  • 13. Heux, L.; Chauve, G.; Bonini, C., Nonflocculating and Chiral-nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents. Langmuir 2000, 16, 8210-8212.
  •  
  • 14. Hubbe, M. A.; Rojas, O. J.; Lucia, L. A.; Sain, M., Cellulosic Nanocomposites: A Review. BioResources 2008, 3, 929-980.
  •  
  • 15. Zhou, X.; Sethi, J.; Geng, S.; Berglund, L.; Frisk, N.; Aitomäki, Y.; Oksman, K., Dispersion and Reinforcing Effect of Carrot Nanofibers on Biopolyurethane Foams. Materials & Design 2016, 110, 526-531.
  •  
  • 16. Członka, S.; Strąkowska, A.; Pospiech, P.; Strzelec, K. Effects of Chemically Treated Eucalyptus Fibers on Mechanical, Thermal and Insulating Properties of Polyurethane Composite Foams. Materials 2020, 13, 1781.
  •  
  • 17. Khanjanzadeh, H.; Behrooz, R.; Bahramifar, N.; Gindl-Altmutter, W.; Bacher, M.; Edler, M.; Griesser, T., Surface Chemical Functionalization of Cellulose Nanocrystals by 3-Aminopropyltriethoxysilane. Int. J. Biological. Macromol. 2018, 106, 1288-1296.
  •  
  • 18. Kahavita, K. D. H. N.; Samarasekara, A. M. P. B.; Amarasinghe, D. A. S.; Karunanayake, L., Influence of Surface Modification of Cellulose Nanofibers (CNF) as the Reinforcement of Polypropylene Based Composite. MERCon 2019, 99-104.
  •  
  • 19. Frank, B. P.; Durkin, D. P.; Caudill, E. R.; Zhu, L.; White, D. H.; Curry, M. L.; Pedersen, J. A., Impact of Silanization on the Structure, Dispersion Properties, and Biodegradability of Nanocellulose as a Nanocomposite Filler. ACS Appl. Nano Mater. 2018, 7025-7038.
  •  
  • 20. Lee, Y. N.; Park, S. S.; Ha, K. R., Preparation and Properties of Eco-Friendly Polyurethane Nanocomposites using Cellulose Nanocrystals with Amino Group as Fillers. Polym. Korea 2020, 44, 397-407.
  •  
  • 21. Chanda, S.; Bajwa, D. S.; Holt, G. A.; Stark, N.; Bajwa, S. G.; Quadir, M., Silane Compatibilzation to Improve the Dispersion, Thermal and Mechancial Properties of Cellulose Nanocrystals in Poly(Ethylene Oxide). Nanocomposites 2021, 7, 87.
  •  
  • 22. Wang, L.; Sanders, J. E.; Gardner, D. G.; Han, Y., In-situ Modification of Cellulose Nanofibrils by Organosilanes During Spray Drying. Industrial Crops and Products 2016, 93, 129-135.
  •  
  • 23. Deng, C.; Cui, Y.; Zhao, T.; Tan, M.; Huang, H.; Guo, M., Mechanically Strong and Stretchable Polyurethane–urea Supramolecular Hydrogel Using Water as an Additional in Situ Chain Extender. RSC Adv. 2014, 4, 24095-24102.
  •  
  • 24. Asplund, B.; Bowden, T.; Mathisen, T.; Hilborn, J., Variable Hard Segment Length in Poly(Urethane Urea) through Excess of Diisocyanate and Vapor Phase Addition of Water. Macromolecules 2006, 39, 4380-4385.
  •  
  • 25. Boonsung, A.; Horpibulsuk, S.; Pathompongpairoj, A.; Sawatwutichaikul, A.; Choenklang, P.; Arulrajah, A., Compressive Strength and Morphology of Rigid Polyurethane Foam for Road Applications. J. Mater. Civil Eng. 2023, 35, 04023474.
  •  
  • 26. Leng, W.; Pan, B., Thermal Insulating and Mechanical Properties of Cellulose Nanofibrils Modified Polyurethane Foam Composite as Structural Insulated Material. Forests 2019, 10, 200.
  •  
  • 27. Lim, H.; Kim, S. H.; Kim, B. K., Effects of the Hydroxyl Value of Polyol in Rigid Polyurethane Foams. Polym. Adv. Technol. 2008, 19, 1729-1734.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2024 Impact Factor : 0.6
  • Indexed in SCIE

This Article

  • 2026; 50(1): 128-135

    Published online Jan 25, 2026

  • 10.7317/pk.2026.50.1.128
  • Received on Jul 28, 2025
  • Revised on Oct 1, 2025
  • Accepted on Oct 17, 2025

Correspondence to

  • Sang-Bum Kim
  • Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Korea

  • E-mail: ksb@kyonggi.ac.kr